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Abstract

We say that a computable structure A is computably categorical if for every computable

copy B, there exists a computable isomorphism f : A → B. This notion can be relativized to

a degree d by saying that a computable structure A is computably categorical relative to d if

for every d-computable copy B of A, there exists a d-computable isomorphism f : A → B. A

key part of this thesis is to study the behavior of this notion of categoricity in the computably

enumerable (c.e.) degrees. We show that it is badly behaved in the c.e. degrees by extending a

previously known result by Downey, Harrison-Trainor, and Melnikov in [9] to partial orders of

c.e. degrees (Theorem 1.1.10). We also show that using largely the same techniques alongside

a standard construction of minimal pairs, we can embed a four-element diamond lattice into

the c.e. degrees in the style of Theorem 1.1.10.

We then apply some of the techniques used in this thesis to study the behavior of this

notion in the context of generic degrees. Additionally, we show that several classes of structures

admit a computable example that witnesses the pathological behavior of categoricity relative

to a degree as seen in Theorem 1.1.10.

Lastly, in the context of reverse mathematics, we investigate the reverse mathematical

strength of a topological principle named wGScl, a weakened version of the Ginsburg-Sands

theorem which states that every infinite topological space contains one of the following five

topologies as a subspace, with N as the underlying set: discrete, indiscrete, cofinite, initial

segment, or final segment.
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Chapter 1

Computable categoricity relative to a

c.e. degree

1.1 Introduction

1.1.1 Preliminaries

In computable structure theory, we are interested in effectivizing model theoretic notions

and constructions. For a general background on computable structure theory, see Downey

[8] and Ash and Knight [2]. In particular, many people have examined the complexity of

isomorphisms between structures within the same isomorphism type. We restrict ourselves to

countable structures in a computable language and assume their domain is ω.

Definition 1.1.1. A computable structure A is computably categorical if for any com-

putable copy B of A, there exists a computable isomorphism between A and B.

There are many known examples of computably categorical structures including com-

putable linear orderings with only finitely many adjacent pairs [26], computable fields of finite

transcendence degree [11], and computable ordered graphs of finite rank [18]. In each of these

examples, the condition given turns out to be both necessary and sufficient for computable
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1.1 INTRODUCTION

categoricity.

We are also interested in studying relativizations of computable categoricity. The most

studied relativization of this notion is relative computable categoricity.

Definition 1.1.2. A computable structure A is relatively computably categorical if for

any copy B of A, there exists a B-computable isomorphism between A and B.

We can think of this relativization as relativizing categoricity to all degrees at once since

we do not fix the complexity of our copies of A. If a structure A is relatively computably

categorical, then it is computably categorical. The converse does not hold in general, but

often holds for structures where there is a purely algebraic characterization of computable

categoricity. In particular, the examples of computable categorical structures listed above are

also relatively computably categorical.

The connection between a purely algebraic characterization of computable categoricity

and the equivalence of computable categoricity and relative computable categoricity was

clarified by the following result which was independently discovered by Ash, Knight, Manasse,

and Slaman [3], and Chisholm [6].

Theorem 1.1.3 (Ash et al., Chisholm). A structure A is relatively computably categorical

if and only if it has a formally Σ0
1 Scott family.

In [17], Gončarov used an enumeration result of Selivanov [28] to give the first example of

a computably categorical structure that is not relatively computably categorical. Later, in

[16], Gončarov proved that if a computable structure has a single 2-decidable copy, then it is

relatively computably categorical. Kudinov [21] constructed an example showing that the

assumption of 2-decidability could not be lowered to 1-decidability.

Theorem 1.1.4 (Gončarov). If a structure is computably categorical and its ∀∃ theory is

decidable, then it is relatively computably categorical.

We expand from computable isomorphisms by allowing a fixed number of jumps.

2



1.1 INTRODUCTION

Definition 1.1.5. For a computable ordinal α, we say that a computable structure A is

∆0
α-categorical if for any computable copy B of A, there is a ∆0

α-computable isomorphism

between A and B.

There are relatively few known characterizations of ∆0
α-categoricity within particular

classes of structures, and what is known often requires extra computability theoretic assump-

tions. For example, McCoy [24] considered computable Boolean algebras for which the set of

atoms and the set of atomless elements were computable in at least one computable copy. He

proved that such a Boolean algebra is ∆0
2-categorical if and only if it is a finite direct sum of

atoms, 1-atoms, and atomless elements.

We can relativize ∆0
α-categoricity in a similar way as with computable categoricity.

Definition 1.1.6. A computable structure A is relatively ∆0
α-categorical if for any copy

B of A, there is a ∆0
α(B)-computable isomorphism between A and B.

This notion also has a nice syntactic characterization, obtained by relativizing Theorem

1.1.3.

Theorem 1.1.7 (Ash et al., Chisholm). A computable structure A is relatively ∆0
α-categorical

if and only if it has a formally Σ0
α Scott family.

The extra computability assumptions needed to characterize ∆0
α-categorical structures

often disappear in the relativized version. McCoy [24] showed that a computable Boolean

algebra is relatively ∆0
2-categorical if and only if it is a finite direct sum of atoms, 1-atoms,

and atomless elements, with no additional assumptions on the computable copy. He obtained

similar results for linear orders in [24] and for ∆0
3-categoricity in [25]. There are also examples

of structures where plain and relativized ∆0
α-categoricity coincide. In [4], Bazhenov proved

that a computable Boolean algebra B is ∆0
2-categorical if and only if it is also relatively

∆0
2-categorical.

3



1.1 INTRODUCTION

1.1.2 Categoricity relative to a degree

In this chapter, we focus on a different relativization of computable categoricity.

Definition 1.1.8. Let d be a Turing degree. A structure A is computably categorical

relative to d if and only if for all d-computable copies B of A, there is a d-computable

isomorphism f : A → B.

Using a relativized version of Gončarov’s [16] result and Theorem 1.1.3, Downey, Harrison-

Trainor, and Melnikov showed that if a computable structure A is computably categorical

relative to a degree d ≥ 0′′, then A is computably categorical relative to all degrees above

0′′. In contrast, they also showed that being computably categorical relative to a degree is

not a monotonic property below 0′.

Theorem 1.1.9 (Downey, Harrison-Trainor, Melnikov). There is a computable structure A

and c.e. degrees 0 = d0 < e0 < d1 < e1 < . . . such that

(1) A is computably categorical relative to di for each i,

(2) A is not computably categorical relative to ei for each i,

(3) A is relatively computably categorical to 0′.

We extend this result to partial orders of c.e. degrees, showing the full extent of pathological

behavior for this relativization of categoricity underneath 0′.

Theorem 1.1.10. Let P = (P,≤) be a computable partially ordered set and let P = P0 ⊔P1

be a computable partition. Then, there exists a computable computably categorical directed

graph G and an embedding h of P into the c.e. degrees where G is computably categorical

relative to each degree in h(P0) and is not computably categorical relative to each degree in

h(P1).

The proof is a priority construction on a tree of strategies, using several key ideas from the

proof of Theorem 1.1.9 in [9] along with some new techniques. In section 1.2, we introduce

4



1.2 INFORMAL STRATEGIES FOR THEOREM 1.1.10

informal descriptions for the strategies we need to satisfy our requirements for the construction

and discuss important interactions between certain strategies. In section 1.3, we detail the

formal strategies, state and prove auxiliary lemmas about our construction, and state and

prove the main verification lemma.

1.2 Informal strategies for Theorem 1.1.10

To prove Theorem 1.1.10, we have four goals to achieve within our construction, giving us

four types of requirements to satisfy. In this section, we give informal descriptions of the

strategies needed to satisfy each requirement in isolation, and then describe the interactions

which arise when we employ these strategies together.

1.2.1 Embedding P into the c.e. degrees

We embed the poset P into the c.e. degrees in a standard way by constructing an independent

family of uniformly c.e. sets Ap for p ∈ P . We fix the following notation:

Dp :=
⊕
q ̸=p

Aq.

For each p ∈ P , we ensure that Ap ̸≤T Dp. The image of p will be the c.e. set Dp = ⊕
q≤p

Aq.

Because the Ap are independent, our embedding is order-preserving, i.e., p ≤ q in P if and

only if Dp ≤T Dq.

For each p ∈ P and e ∈ ω, we define the independence requirement:

Np
e : ΦDp

e ̸= Ap.

In order to satisfy an Np
e requirement in isolation, we use the following Np

e -strategy.

Let α be an Np
e -strategy. When α is first eligible to act, it picks a large number xα.

Once xα is defined, α checks if ΦDp
e (xα)[s] ↓= 0. If not, α takes no action at stage s. If

ΦDp
e (xα)[s] ↓= 0, then α enumerates xα into Ap and preserves this computation by restraining

5



1.2 INFORMAL STRATEGIES FOR THEOREM 1.1.10

Dp ↾ (use(ΦDp
e (xα)) + 1).

Notice that if we never see that ΦDp
e (xα) ↓= 0, then either ΦDp

e (xα) ↑ or ΦDp
e (xα) ↓̸= 0,

and in either case, the value of ΦDp
e (xα) will not be equal to Ap(xα) = 0 and so we meet the

Np
e requirement. Otherwise, at the first stage s for which ΦDp

e (xα)[s] ↓= 0, we enumerate xα

into Ap and restrain Dp below use(ΦDp
e (xα)) + 1. In this case we have that ΦDp

e (xα) ↓= 0 ̸=

1 = Ap(xα), and so we satisfy Np
e .

1.2.2 Making G computably categorical

We will build G in stages. At stage s = 0, we set G = ∅. Then, at stage s > 0, we add

two new connected components to G[s] by adding the root nodes a2s and a2s+1 for those

components, and attaching to each node a 2-loop (a cycle of length 2). We then attach a

(5s+ 1)-loop to a2s and a (5s+ 2)-loop to a2s+1. This gives us the configuration of loops:

a2s : 2, 5s+ 1

a2s+1 : 2, 5s+ 2.

The connected component consisting of the root node a2s with its attached loops will be

referred to as the 2sth connected component of G. During the construction, we might

add more loops to connected components of G, which causes them to have one of the two

following configurations:

a2s : 2, 5s+ 1, 5s+ 3

a2s+1 : 2, 5s+ 1, 5s+ 4

or

a2s : 2, 5s+ 1, 5s+ 2, 5s+ 3

a2s+1 : 2, 5s+ 1, 5s+ 2, 5s+ 4.

The idea behind adding these loops is to uniquely identify each connected component

6



1.2 INFORMAL STRATEGIES FOR THEOREM 1.1.10

of G. In all configurations above, there is only one way to match the components in G with

components in a computable graph in order to define an embedding.

To make G computably categorical, we attempt to build an embedding of G into each

computable directed graph. For each index e, let Me be the (partial) computable graph

with domain ω such that E(x, y) ⇐⇒ Φe(x, y) = 1 and ¬E(x, y) ⇐⇒ Φe(x, y) = 0. If

Φe is not total, then Me will not be a computable graph, but we will attempt to embed G

into Me anyway since we cannot know whether Φe is total or not. So we have the following

requirement for each e ∈ ω.

Se : if G ∼= Me, then there exists a computable isomorphism fe : G → Me

To satisfy each Se requirement in isolation, we have the following strategy. Let α be an

Se-strategy. When α is first eligible to act, it sets its parameter nα = 0 and defines its

current map fα from G into Me to be empty. For the rest of this description, let n = nα.

This parameter will keep track of the connected components that α is attempting to match

between G and Me, and will be incremented by 1 only when we find copies of the 2nth and

(2n+ 1)st connected components of G. Suppose the map fα[s− 1] matches up the 2mth and

(2m+ 1)st components of G[s− 1] and Me[s− 1] for all m < n. At future stages, α checks

whether Me[s] contains isomorphic copies of the 2nth and (2n+ 1)st components in G[s]. If

not, α takes no additional action at stage s and retains the parameter n and the map fα.

If Me[s] contains copies of these components, then α extends the map by matching those

components in G[s] and Me[s], and it increments the value of n by 1.

If α finds copies of the 2nth and (2n+ 1)st components of G for every n, then fα will be a

computable embedding of G into Me. Because of the form of G, if Me
∼= G, then fα will be

a partial embedding which can be extended computably to a computable embedding on all

of G, satisfying the Se requirement. Otherwise, there exists some n such that the 2nth and

(2n+ 1)st components of G were never matched, and so G and Me cannot be isomorphic and

so we trivially satisfy Se.

7



1.2 INFORMAL STRATEGIES FOR THEOREM 1.1.10

1.2.3 Being computably categorical relative to a degree

In this construction, we want to define computations using a Dp-oracle that can be destroyed

later by enumerating numbers into Ap. We achieve this by setting the use of the Dp-

computation to be ⟨u, p⟩. Enumerating u into Ap causes ⟨u, p⟩ to enter Dp, destroying the

associated computation.

For each p ∈ P0, we ensure G is computably categorical relative to Dp. Let MDp

i be the

(partial) Dp-computable directed graph with domain ω and edge relation given by ΦDp

i . Since

each Dp is c.e., we define the following terms to keep track of certain finite subgraphs which

appear and remain throughout our construction.

Definition 1.2.1. Let C0 and C1 be isomorphic finite distinct subgraphs of MDp

i [s]. The

age of C0 is the least stage t ≤ s such that all edges in C0 appear in MDp

i [t], denoted by

age(C0). We say that C0 is older than C1 when age(C0) ≤ age(C1).

We say that C0 is the oldest if for all finite distinct subgraphs C ∼= C0 of MDp

i [s],

age(C0) ≤ age(C).

Definition 1.2.2. Let C0 = ⟨a0, a1, . . . , ak⟩ and C1 = ⟨b0, b1, . . . , bk⟩ be isomorphic finite

distinct subgraphs of MDp

i [s] with a0 < a1 < · · · < ak and b0 < b1 < · · · < bk. We say that

C0 <lex C1 if for the least j such that aj ̸= bj, aj < bj.

We say that C0 is the lexicographically least if for all finite distinct subgraphs C ∼= C0

of MDp

i [s], C0 <lex C.

If G ∼= MDp

i , then we need to build a Dp-computable isomorphism between these graphs.

To achieve this, we meet the following requirement for each i ∈ ω.

T p
i : if G ∼= MDp

i , then there exists a Dp-computable isomorphism g
Dp

i : G → MDp

i

The strategy to satisfy each T p
i requirement in isolation is similar to the Se-strategy, with

some additional changes. Since the graphs are Dp-computable, embeddings defined by a

T p
i -strategy may become undefined later when small numbers enter Dp. Enumerations into

8



1.2 INFORMAL STRATEGIES FOR THEOREM 1.1.10

Dp also cause changes in MDp

i such as disappearing edges. We will show in the verification

that if G ∼= MDp

i , “true” copies of components from G will eventually appear and remain in

MDp

i (and thus become the oldest finite subgraph which is isomorphic to a component in G),

and so our T p
i -strategy below will be able to define the correct Dp-computable isomorphism

between the two graphs.

Let α be a T p
i -strategy. When α is first eligible to act, it sets its parameter nα = 0 and

defines gDp
α to be the empty map. Once α has defined nα, then at the previous stage s− 1

(or the last α-stage in the full construction), we have the following situation:

• For each m < nα, gDp
α [s− 1] maps the 2mth and (2m+ 1)st components of G[s− 1] to

isomorphic copies in MDp

i [s− 1].

• For m < nα, let lm be the maximum ΦDp

i [s − 1]-use for the loops in the copies in

MDp

i [s − 1] for the 2mth and (2m + 1)st components in G. We can assume that if

m0 < m1 < nα, then lm0 < lm1 .

• For m < nα, let ⟨um, p⟩ be the gDp
α [s−1]-use for the mapping of the 2mth and (2m+1)st

components of G. This use will be constant for all elements in these components.

• By construction, we will have that lm < uk ≤ ⟨uk, p⟩ for all m ≤ k < nα.

Suppose α is acting at stage s and has already defined nα. We first check whether numbers

have been enumerated into Dp that injure the loops in MDp

i [s− 1] given by ΦDp

i [s− 1]. If

not, then we keep the current value of nα and skip ahead to the next step. If so, then let k

be the least such that some number x ≤ lk was enumerated into Dp. The loops in MDp

i [s]

in the copies of the 2kth and (2k + 1)st components of G have been injured, and so may

have disappeared. We have that x ≤ ⟨um, p⟩ for all k ≤ m < nα, and so our map gDp
α [s] is

now undefined on all the 2mth and (2m+ 1)st components for k ≤ m < nα. So, α redefines

nα = k to find new images for the 2kth and (2k + 1)st components in G[s].

Second, we check to see if there is a j < k and a new x ∈ Dp such that lj < x < ⟨uj, p⟩. By

minimality of the value k above, we know that lj < x for all j < k and x ∈ Dp[s] \Dp[s− 1].

9



1.2 INFORMAL STRATEGIES FOR THEOREM 1.1.10

For each such j, our map gDp
α [s− 1] has been injured on the 2jth and (2j + 1)st components

of G, but the loops in the copies of those components in MDp

i [s] remain intact. Therefore, we

define gDp
α [s] on these components with oracle Dp[s] to be equal to gDp

α [s− 1]. Furthermore,

we keep the same use for gDp
α [s] on these components. This will ensure that injury of this

type happens only finitely often.

Third, we check whether we can extend gDp
α [s−1] to the 2nαth and (2nα +1)st components

of G[s]. Search for isomorphic copies in MDp

i [s] of these components. If there are multiple

copies in MDp

i [s], choose the oldest such copy to map to, and if there are multiple equally

old copies, choose the lexicographically least oldest copy. If there are no copies in MDp

i [s],

then keep the value of nα the same and gDp
α unchanged and let the next requirement act.

Otherwise, extend gDp
α [s− 1] to gDp

α [s] to include the 2nαth and (2nα + 1)st components of G

and set the use to be ⟨unα , p⟩ where unα is large (and so unα > lk for all k ≤ nα). Increment

nα by 1 and go to the next requirement.

If G ∼= MDp

i , then for each n, eventually the real copies of the 2nth and (2n + 1)st

components of G will appear and remain forever in MDp

i . Moreover, they will eventually be

the oldest and lexicographically least copies in MDp

i . Let ln be the maximum true Dp-use on

the edges in the loops in these MDp

i components. At this point, we will define gDp
α correctly

on these components with a large use ⟨un, p⟩. Since ln < ⟨un, p⟩, at most finitely many

numbers enter Dp from the interval (ln, ⟨un, p⟩], but each time this happens, we define our

map gDp
α to remain the same with the same use on the new oracle. Therefore, eventually our

map gDp
α is never injured again on the 2nth and (2n + 1)st components. It follows that if

G ∼= MDp

i , then gDp
α will be an embedding of G into MDp

i which will be an isomorphism by

the structure of G.

1.2.4 Being not computably categorical relative to a degree

Finally, for each q ∈ P1 we want to make G not computably categorical relative to the c.e.

set Dq. To achieve this, we build a Dq-computable copy Bq of G such that for all e ∈ ω,

10
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the Dq-computable map ΦDq
e : G → Bq is not an isomorphism. The graph Bq will be built

globally.

Similarly to G, we build the directed graph Bq in stages. At stage s = 0, we set Bq = ∅.

At stage s > 0, we add root nodes bq
2s and bq

2s+1 to Bq and attach to each one a 2-loop.

Next, we attach a (5s+ 1)-loop to bq
2s and a (5s+ 2)-loop to bq

2s+1 with Dq-use s. However,

throughout the construction, we may change the position of loops or add new loops to specific

components of Bq depending on enumerations into Aq (and thus into Dq). For the 2sth and

(2s+ 1)st components of Bq, we have three possible final configurations of the loops. If we

never start the process of diagonalizing using these components, then they will remain the

same forever:

bq
2s : 2, 5s+ 1

bq
2s+1 : 2, 5s+ 2.

If we start, but don’t finish, diagonalizing using these components, they will end in the

following configuration:

bq
2s : 2, 5s+ 1, 5s+ 3

bq
2s+1 : 2, 5s+ 1, 5s+ 4

If we complete a diagonalization with these components, then they will end as:

bq
2s : 2, 5s+ 1, 5s+ 2, 5s+ 4

bq
2s+1 : 2, 5s+ 1, 5s+ 2, 5s+ 3.

For all e ∈ ω, we meet the requirement

Rq
e : ΦDq

e : G → Bq is not an isomorphism.

To satisfy this requirement, we will diagonalize against ΦDq
e . Let α be an Rq

e-strategy.

When α is first eligible to act, it picks a large number nα, and for the rest of this strategy,

11
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let n = nα. This parameter indicates which connected components of Bq will be used in the

diagonalization. At future stages, α checks if ΦDq
e maps the 2nth and (2n+ 1)st connected

component of G to the 2nth and (2n+ 1)st connected component of Bq, respectively. If not,

α does not take any action. If α sees such a computation, it defines mα to be the max of the

uses of the computations on each component and restrains Dq ↾ mα + 1.

At this point, our connected components in G[s] and Bq[s] are as follows:

a2n : 2, 5n+ 1 bq
2n : 2, 5n+ 1

a2n+1 : 2, 5n+ 2 bq
2n+1 : 2, 5n+ 2.

Since ΦDq
e looks like a potential isomorphism between G and Bq, α will now take action to

eventually force the true isomorphism to match a2n with bq
2n+1 and to match a2n+1 with bq

2n

while preventing ΦDq
e from correcting itself on these components. Furthermore, α must do

this in a way that will allow other requirements to succeed.

After mα has been defined, α adds a (5n+ 3)-loop to a2n and a (5n+ 4)-loop to a2n+1 in

G[s]. It also attaches a (5n+ 3)-loop to bq
2n and a (5n+ 4)-loop to bq

2n+1 in Bq[s]. Let vα be a

large unused number and set the use of all edges in these new loops appearing in Bq[s] to be

⟨vα, q⟩. Notice that ⟨vα, q⟩ > mα and that enumerating vα into Aq will put ⟨vα, q⟩ into Dq,

removing the (5n+ 3)- and (5n+ 4)-loops from Bq but not the (5n+ 1)- or (5n+ 2)-loops.

Our connected components in G[s] and in Bq[s] are now:

a2n : 2, 5n+ 1, 5n+ 3 bq
2n : 2, 5n+ 1, 5n+ 3

a2n+1 : 2, 5n+ 2, 5n+ 4 bq
2n+1 : 2, 5n+ 2, 5n+ 4.

After adding the (5n + 3)- and (5n + 4)-loops to both graphs, α must now wait for

higher priority strategies which have already defined their maps on the 2mth and (2m+ 1)st

components for all m ≤ n to recover their maps before taking the last step. If β is a higher

priority S or T strategy for which fβ or gDp

β is already defined on the 2nth and (2n+ 1)st

components of G, then before completing its diagonalization, α must wait for β to extend fβ

12
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or gDp

β to be defined on the new (5n+ 3)- and (5n+ 4)-loops. We will refer to this action as

α issuing a challenge to all higher priority S and T requirements.

Once all higher priority strategies recover, α enumerates vα into Aq (and thus ⟨vα, q⟩ goes

into Dq). Doing this causes the (5n+ 3)-loop attached to bq
2n and the (5n+ 4)-loop attached

to bq
2n+1 to disappear in Bq[s]. We now attach a (5n+ 4)-loop to bq

2n and a (5n+ 3)-loop to

bq
2n+1. We also attach a (5n+ 1)-loop to a2n+1 and bq

2n+1 and a (5n+ 2)-loop to a2n and bq
2n,

and we will refer to this process as homogenizing the components in G and in Bq. The final

configuration of our loops is:

a2n : 2, 5n+ 1, 5n+ 2, 5n+ 3 bq
2n : 2, 5n+ 1, 5n+ 2, 5n+ 4

a2n+1 : 2, 5n+ 1, 5n+ 2, 5n+ 4 bq
2n+1 : 2, 5n+ 1, 5n+ 2, 5n+ 3.

By homogenizing the components, we ensured that when we added loops for the diagonal-

ization in Bq, we also made adjustments in G to keep the components isomorphic to each

other. Additionally, because vα > mα, the values ΦDq
e (a2n) = b2n and ΦDq

e (a2n+1) = b2n+1

remain. So if ΦDq
e [s] is extended to a map on the entirety of G, it cannot be a Dq-computable

isomorphism, and so Rq
e is satisfied. If we meet Rq

e for all e ∈ ω, we have that G is not

computably categorical relative to Dq with Bq being the witness.

1.2.5 Interactions between multiple strategies

There are some interactions which can cause problems between these strategies. We will

explain how the strategies described in this section, with some tweaks, can solve these issues.

We first point out that the independence requirements cause no serious issues for the

other requirements. An Np
e -strategy α, when it is first eligible to act, will pick a large unused

number xα, and so if it ever enumerates xα into Ap, it will not violate any restraints placed

by higher priority independence or Rq
e requirements. If this enumeration injures loops in or

embeddings defined on components of MDr
i for some higher priority T r

i -strategy where p ≤ r,

the T r
i -strategy will be able to check for this Dr change when it is next eligible to act and

13
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will be able to react accordingly to succeed.

The next main interaction to note is between an Rq
e-strategy β and an S- or T -strategy

α where α⌢⟨∞⟩ ⊆ β. In the tree of strategies, α⌢⟨∞⟩ ⊆ β indicates that β guesses α will

define an embedding of G into its graph Mi or MDp

i . In the informal description for β, we

had β wait for higher priority strategies to recover their embeddings defined on G after we

added (5n + 3)- and (5n + 4)-loops to components of G. When β adds the new loops, it

updates α’s parameter by setting nα = nβ if α is an S-strategy. If α is instead a T -strategy,

then β updates nα to be the least m ≤ nβ such that gDp
α is no longer fully defined on the

2mth and (2m+ 1)st components of G (for reasons that will become clear below). In either

case, this causes α to return to previous components of G to find copies of them in either

Me or MDp

i . If it is the case that either G ∼= Me or G ∼= MDp

i , α will eventually find copies

and is able to define either a computable or Dp-computable isomorphism between the two

graphs. Hence, the only tweaks needed for the Se- and T p
i -strategies α are steps in which

they check if there is a lower priority Rq
e-strategy β where α⌢⟨∞⟩ ⊆ β that has issued its

challenge after adding the new initial loops in G.

There is a related technical point concerning Rq
e homogenizing the 2nβth and (2nβ + 1)st

components in the last step of its diagonalization. We do not ask the higher priority S- and

T -strategies α with α⌢⟨∞⟩ ⊆ β to go back and match these final homogenizing loops. Instead,

we will extend fα (or gDp
α ) to those homogenizing loops in a computable (or Dp-computable)

way for α on the true path in the verification.

One last interaction arises between an Rq
e-strategy β and a T p

i -strategy α where α⌢⟨∞⟩ ⊆

β and q < p in P . With the current construction, we could have the following situation which

makes it impossible for α to succeed. Suppose α finds copies at a stage s0 of the 2nβth and

(2nβ + 1)st components of G[s0] into MDp

i [s0], and we have the following components in both

14
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graphs

a2nβ
: 2, 5nβ + 1 c : 2, 5nβ + 1

a2nβ+1 : 2, 5nβ + 2 d : 2, 5nβ + 2

where c and d are the root nodes of the copies of the G components found in MDp

i [s0]. At

this point, α defines gDp
α [s0] by mapping a2nβ

7→ c and a2nβ+1 7→ d with a use ⟨uα,nβ
, p⟩.

Suppose at a later stage s1 > s0, β adds new loops to the corresponding components in G

with a Dq-use of ⟨vα, q⟩ for vα large and issues its challenge, and so our components in G[s1]

and MDp

i [s1] are

a2nβ
: 2, 5nβ + 1, 5nβ + 3 c : 2, 5nβ + 1

a2nβ+1 : 2, 5nβ + 2, 5nβ + 4 d : 2, 5nβ + 2.

Then, suppose at stage s2 > s1 that ΦDp

i [s1] adds the new loops correctly to c and d:

a2nβ
: 2, 5nβ + 1, 5nβ + 3 c : 2, 5nβ + 1, 5nβ + 3

a2nβ+1 : 2, 5nβ + 2, 5nβ + 4 d : 2, 5nβ + 2, 5nβ + 4.

Let zα,nβ
be the minimum use for any of the new edges in these loops, and assume that

⟨vα, q⟩ < zα,nβ
. The strategy α extends gDp

α [s1] to map the (5nβ + 3)- and (5nβ + 4)-loops

from G into MDp

i with a large use (i.e., greater than ⟨uα,nβ
, p⟩). α has now met its challenge

and takes the ∞ outcome.

Finally, suppose at a stage s3 > s2, β is eligible to act again. β enumerates vα into Aq,

which enumerates ⟨vα, q⟩ into Dq and Dp since q < p. Since ⟨vα, q⟩ ∈ Dq, the (5nβ + 3)-

and (5nβ + 4)-loops in Bq disappear, and so β can homogenize the 2nβth and (2nβ + 1)st

components in G and in Bq and diagonalize.

a2nβ
: 2, 5nβ + 1, 5nβ + 2, 5nβ + 3 bq

2nβ
: 2, 5nβ + 1, 5nβ + 2, 5nβ + 4

a2nβ+1 : 2, 5nβ + 1, 5nβ + 2, 5nβ + 4 bq
2nβ+1 : 2, 5nβ + 1, 5nβ + 2, 5nβ + 3.

15
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The map ΦDq
e [s3] still maps a2nβ

to bq
2nβ

and a2nβ+1 to bq
2nβ+1 since the Dq-use for these

computations is less than vα and thus less than ⟨vα, q⟩.

However, because ⟨vα, q⟩ has gone into Dp as well and ⟨vα, q⟩ < zα,nβ
, the (5nβ + 3)- and

(5nβ + 4)-loops in MDp

i [s3] also disappear. But vα was chosen to be large at stage s1, so

vα > uα,nβ
and so gDp

α [s3] still maps a2nβ
to c and a2nβ+1 to d. This allows the opponent

controlling MDq

i to add loops in the following way to diagonalize:

a2nβ
: 2, 5nβ + 1, 5nβ + 2, 5nβ + 3 c : 2, 5nβ + 1, 5nβ + 2, 5nβ + 4

a2nβ+1 : 2, 5nβ + 1, 5nβ + 2, 5nβ + 4 d : 2, 5nβ + 1, 5nβ + 2, 5nβ + 3.

This now makes it impossible for α to succeed if G ∼= MDp

i .

To solve this conflict, α needs to lift the use of gDp
α [s1] when β starts its diagonalization

process. Specifically, when β adds the (5nβ + 3)- and (5nβ + 4)-loops to Bq and sets their

Dq-use to be ⟨vα, q⟩, we enumerate uα,nβ
into Ap, which puts ⟨uα,nβ

, p⟩ into Dp but nothing

into Dq. This action makes gDp
α undefined on the 2nβth and (2nβ + 1)st components of G.

When α is next eligible to act, it will redefine gDp
α on the 2nβth and (2nβ + 1)st components

of G with a large use greater than ⟨vα, q⟩. Therefore, if β later enumerates vα into Aq to

diagonalize, the map gDp
α will become undefined on the entirety of the 2nβth and (2nβ + 1)st

components, preventing the opponent from using MDp

i to diagonalize against α.

It is possible that there is more than one T -strategy α with α⌢⟨∞⟩ ⊆ β associated with

elements in P greater than q. In this case, β has to enumerate the use uα,nβ
for each such α

into Aq. These elements may cause gDp
α to become undefined on the 2mth and (2m+ 1)st

components for m < nβ, or for these components in MDp
α to disappear. Therefore, for a

T p
i -strategy α with α⌢⟨∞⟩ ⊆ β and q < p, β resets nα to be the least m ≤ nβ such that gDp

α

no longer matches the 2mth and (2m+ 1)st components in G and MDp

i .
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1.3 Proof of Theorem 1.1.10

In this section, we prove Theorem 1.1.10. Fix a computable partially ordered set P = (P,≤),

and let P = P0 ⊔ P1 be a computable partition of P .

We build our computable directed graph G stage by stage as outlined in section 1.2.2,

and for each q ∈ P1, we build an isomorphic copy Bq of G as outlined in section 1.2.4.

We will also build a uniformly c.e. family of independent sets Ap for p ∈ P via a priority

argument on a tree of strategies. We define

Dp =
⊕
q≤p

Aq

and

Dp =
⊕
q ̸=p

Aq.

Our embedding h of P into the c.e. degrees is the map h(p) = Dp for all p ∈ P .

1.3.1 Requirements

Recall our four types of requirements for our construction:

Np
e : ΦDp

e ̸= Ap

Se : if G ∼= Me, then there exists a computable isomorphism fe : G → Me

T p
i : if G ∼= MDp

i , then there exists a Dp-computable isomorphism g
Dp

i : G → MDp

i

Rq
e : ΦDq

e : G → Bq is not an isomorphism

1.3.2 Construction

Let Λ = {∞ <Λ · · · <Λ w2 <Λ s <Λ w1 <Λ w0} be the set of outcomes, and let T = Λ<ω be

our tree of strategies. The construction will be performed in ω many stages s.

We define the current true path ps, the longest strategy eligible to act at stage s,
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inductively. For every s, λ, the empty string, is eligible to act at stage s. Suppose the strategy

α is eligible to act at stage s. If |α| < s, then follow the action of α to choose a successor

α⌢⟨o⟩ on the current true path. If |α| = s, then set ps = α. For all strategies β such that

ps <L β, initialize β (i.e., set all parameters associated to β to be undefined). If β <L ps and

|β| < s, then β retains the same values for its parameters.

We will now give formal descriptions of each strategy and their outcomes in the construc-

tion.

1.3.3 Np
e -strategies and outcomes

We first cover the Np
e -strategies used to make each c.e. set Ap independent. Let α be an

Np
e -strategy eligible to act at stage s.

Case 1: If α is acting for the first time at stage s or has been initialized since the last

α-stage, define its parameter xα to be large, and take outcome w0.

Case 2: If xα is already defined and α took outcome w0 at the last α-stage, check if

ΦDp
e (xα)[s] ↓= 0.

If not, take the w0 outcome. If ΦDp
e (xα)[s] ↓= 0, enumerate xα into Ap and take the s outcome

which will preserve Dp ↾ (use(ΦDp
e (xα)[s]) + 1).

Case 3: If α took the s outcome the last time it was eligible to act and has not been

initialized, take the s outcome again.

1.3.4 Se-strategies and outcomes

We now detail our Se-strategy to make G computably categorical. Let α be an Se-strategy

eligible to act at stage s.

Case 1: If α is acting for the first time or has been initialized since the last α-stage,

define nα = 0 and fα[s] to be the empty map. Take the w0 outcome.

Case 2: If α has defined nα and is currently challenged by an Rq
e-strategy β with
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α⌢⟨∞⟩ ⊆ β, then α acts as follows. In the verification, we show that there can only be one

strategy challenging α at a time. When β challenged α, if the value of nα was greater than nβ,

then β redefined nα to be equal to nβ. Therefore, we currently have nα ≤ nβ. Furthermore,

if nα = nβ, then fα may already be defined on the (5nα + 1)- and (5nα + 2)-loops in the

2nαth and (2nα + 1)st components of G.

α searches for copies of the 2nαth and (2nα + 1)st components of G in Me[s]. More

formally, if fα is not defined on any loops in these components, then α searches for full copies

of both components in Me[s]. If nα = nβ and fα is already defined on the (5nα + 1)- and

(5nα + 2)-loops in G, then α searches for the new loops of lengths 5nα + 3 and 5nα + 4 in

the matched components in Me[s]. If no copies are found, set fα[s] = fα[s − 1], leave nα

unchanged, and take the wnα outcome. If copies are found, extend fα[s − 1] to fα[s] by

matching the components, increment nα by 1 and check if nα > nβ for this new nα. If yes,

take the ∞ outcome and declare β’s challenge to have been met. If not, take the wnα outcome

and let β’s challenge remain active.

Case 3: If α has defined its parameter nα and α is not currently challenged, then, α

continues to search for copies of the 2nαth and (2nα + 1)st components of G in Me[s]. If no

copies are found, define fα[s] = fα[s − 1], leave nα unchanged, and take the wnα outcome.

Otherwise, extend fα[s− 1] to fα[s] by mapping the components to their respective copies in

Me[s], increment nα by 1, and take the ∞ outcome.

1.3.5 T p
i -strategies and outcomes

For each p ∈ P0, we have the following T p
i -strategy. Let α be a T p

i -strategy eligible to act at

stage s.

Case 1: If α is acting for the first time or has been initialized since the last α-stage, set

nα = 0, define gDp
α [s] to be the empty function, and take the w0 outcome.

Case 2: α is currently challenged by an Rq
e-strategy β where α⌢⟨∞⟩ ⊆ β. Let s0 be the

stage at which β challenged α. In the verification, we will show that there can only be one
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strategy challenging α at a time. When β challenged α at stage s0, it redefined nα to equal

the least m ≤ nβ such that gDp
α is not fully defined on the 2mth and (2m+ 1)st components

of G.

If q < p and s is the first α-stage since s0 and nα was greater than nβ at stage s0,

then we have to perform a preliminary action. In this case, β enumerated uα,nβ
into Ap,

causing the map gDp
α [s0] to become undefined on the 2nβth and (2nβ + 1)st components of G.

Choose a new large number uα,nβ
and redefine gDp

α [s] to be equal to gDp
α [s0] on the 2-loops,

(5nβ + 1)-loops, and (5nβ + 2)-loops in these components with use ⟨uα,nβ
, p⟩. This ends the

preliminary step.

Next, we perform the main action in this case. If nα = nβ and gDp
α is already defined on

the (5nα + 1)- and (5nα + 2)-loops of the 2nαth and (2nα + 1)st components in G, then α

searches for the oldest and lexicographically least copies of the (5nα + 3)- and (5nα + 4)-loops

in MDp

i [s]. If gDp
α is not currently defined on any of the loops in the 2nαth and (2nα + 1)st

components of G, then α searches for the oldest and lexicographically least copies of these

components in MDp

i [s]. In either case, if such copies are found, extend gDp
α [s] to map onto

these copies with use ⟨uα,nα , p⟩ for large uα,nα , increment nα by 1, and check if nα > nβ for

this new nα. If yes, take the ∞ outcome and declare β’s challenge to α to be met. If not,

then take the wnα outcome and let β’s challenge to α remain active.

Case 3: α is not currently challenged by an Rq
e-strategy. Let t be the last α-stage. In

this case, α defined gDp
α [t] on the 2mth and (2m + 1)st components with use ⟨uα,m, p⟩ for

m < nα. Let lm be the max Dp-use for the computation of a loop in the image of the 2mth

and (2m+ 1)st components under gDp
α [t]. In the verification, we will show that lm < uα,m for

all m < nα.

Step 1: If there is an m < nα such that Dp[t] ↾ lm ≠ Dp[s] ↾ lm, then let m be the least

such value. Note that for m ≤ m∗ < nα, the map gDp
α is now undefined on the 2m∗th and

(2m∗ + 1)st components of G. The loops in the image of the 2kth and (2k + 1)st components

of G under gDp
α [t] for k < m remain in MDp

i [s]. Update nα = m.
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Step 2: By the update in Step 1, we have that for eachm < nα thatDp[t] ↾ lm = Dp[s] ↾ lm.

For each m < nα, if any, where Dp[t] ↾ ⟨uα,m, p⟩ ̸= Dp[s] ↾ ⟨uα,m, p⟩, set gDp
α [s] = gDp

α [t] on

the loops in G in the 2mth and (2m+ 1)st components with the same use as at stage t.

Step 3: We can now perform the main action of this case. α searches for the oldest and

lexicographically least copies of the 2nαth and (2nα + 1)st components of G in MDp

i [s]. If no

copies are found, leave gDp
α and nα unchanged and take outcome wnα . Otherwise, extend gDp

α

by mapping the loops in the 2nαth and (2nα + 1)st components of G to their copies in MDp

i

with use ⟨uα,nα , p⟩ where uα,nα is chosen large, increment nα by 1, and take the ∞ outcome.

1.3.6 Rq
e-strategies and outcomes

Finally, for each q ∈ P1, we have the following Rq
e-strategy. Let α be an Rq

e-strategy eligible

to act at stage s.

Case 1: If α is first eligible to act at stage s or has been initialized, define the parameter

nα = n to be large and take outcome w0.

Case 2: If we are not in Case 1 and α took outcome w0 at the last α-stage, check

whether ΦDq
e [s] maps the 2nth and (2n+ 1)st components of G isomorphically into Bq. If not,

take outcome w0.

If so, set mα to be the maximum Dq-use of these computations. Let vα be large. Add

a (5n+ 3)-loop to a2n in G (computably) and to bq
2n in Bq (with Dq-use ⟨vα, q⟩) and add a

(5n+ 4)-loop to a2n+1 in G (computably) and to bq
2n+1 in Bq (with Dq-use ⟨vα, q⟩).

For each T p
i -strategy γ where γ⌢⟨∞⟩ ⊆ α and q < p, enumerate the use uγ,n into Ap

(and so ⟨uγ,n, p⟩ enters Dp), and challenge γ. Note that if nγ < nα, then there is no uγ,n to

enumerate into Ap. For each S-strategy β where β⌢⟨∞⟩ ⊆ α, challenge β and reset nα = nβ

if nα > nβ. Otherwise, leave nβ as it is. For each T -strategy β where β⌢⟨∞⟩ ⊆ α, reset

nβ to be the least m ≤ nα such that gDp
α does not match all of the 2mth and (2m + 1)st

components of G. Take outcome w1.

Case 3: If α took outcome w1 at the last α-stage, then enumerate vα into Aq, move the
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(5n+ 3)-loop in Bq from bq
2n to bq

2n+1, and move the (5n+ 4)-loop in from bq
2n+1 to bq

2n. Attach

a (5n+ 1)-loop to a2n+1 and bq
2n+1 and a (5n+ 2)-loop to a2n and bq

2n and define the Dq-use

of these new loops to be large. Take outcome s.

Case 4: If α took outcome s at the last α-stage and has not been initialized, then take

outcome s.

1.3.7 Verification

We first prove that the map h where h(p) = Dp is an embedding into the c.e. degrees (if

all Np
e requirements are satisfied) and the computable and Dp-computable embeddings for

p ∈ P0, if they are defined, are the isomorphisms needed for G’s categoricity. We will then

prove key observations about the construction before stating the main verification lemma.

Lemma 1.3.1. Suppose that for all p ∈ P and e ∈ ω, the requirement Np
e is satisfied. Then,

for all p, q ∈ P , we have that p ≤ q if and only if Dp ≤T Dq.

Proof. Assume that each Np
e requirement was satisfied and suppose that p ≤ q. Since p ≤ q,

for all r where r ≤ p, we have that r ≤ q as well and so Dp ≤T Dq. If p ̸≤ q, then since

Ap ̸≤T

⊕
t̸=p

At,

it immediately follows that Ap ̸≤T
⊕
t≤q

At and hence Dp ̸≤T Dq.

Lemma 1.3.2. If f : G → G is an embedding of G into itself, then f is an isomorphism (and

is, in fact, the identity map).

Proof. Let f : G → G be an embedding. Since embeddings preserve loops and only the

root nodes am are contained in more than one loop, f must map root nodes to root nodes.

Furthermore, since only the root nodes a2n and a2n+1 can have (5n+ 1)-loops, we can only

have that f(a2n) = a2n or f(a2n) = a2n+1. However, the only situation in which a2n+1 has a

(5n+ 1)-loop is when we attached a (5n+ 3)-loop to a2n but not to a2n+1. Thus, f(a2n) = a2n

22



1.3 PROOF OF THEOREM 1.1.10

and similarly, f(a2n+1) = a2n+1. Since G is a directed graph, it must map the loops attached

to a2n and to a2n+1 identically onto themselves.

Lemma 1.3.3. If Me
∼= G for a computable directed graph Me and fe : G → Me is an

embedding defined on all of G, then fe is an isomorphism.

Proof. This follows immediately from Lemma 1.3.2.

By Lemma 1.3.3, if Me
∼= G or G ∼= MDp

i , then there is a unique isomorphism from G to

Me and from G to MDp

i . We refer to the image of the 2nth and (2n+ 1)st components of G

in MDp
e as the true copies of these components in MDp

i . We now prove several auxiliary

lemmas about the construction.

Lemma 1.3.4. If G ∼= MDp

i , then for each n, there is an s such that for all t ≥ s, the true

copies of the 2nth and (2n+1)st components of G in MDp

i are the oldest and lexicographically

least isomorphic copies in MDp

i [t] of these components.

Proof. Let u be the maximum Dp-use for the edges in the true copies of these components in

MDp

i and let s0 be such that Dp ↾ (u + 1)[s0] = Dp ↾ (u + 1). Because Dp is c.e., the true

components will be defined at every stage s ≥ s0. There may be a finite number of older fake

copies of these components, but they will disappear as numbers enter Dp, and so for a large

enough s ≥ s0, the true copies will be the oldest and lexicographically least in MDp

i [s].

Lemma 1.3.5. Let α be an Np
e -strategy that enumerates xα into Ap at stage s. Unless α is

initialized, no number below use(ΦDp
e (xα)[s]) is enumerated into Dp after stage s.

Proof. After α enumerates xα into Ap at stage s, all strategies extending α⌢⟨s⟩ will define new

large parameters greater than use(ΦDp
e (xα)[s]). The only strategies which have parameters

smaller than use(ΦDp
e (xα)[s]) are to the left of α on the tree of strategies or are R- or N -

strategies β such that β ⊂ α. When β enumerates a number into their assigned c.e. set, then

it will take outcome s and initialize α.
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Lemma 1.3.6. An Se-strategy or a T p
i -strategy can be challenged by at most one R-strategy

at any given stage.

Proof. Let α be an Se-strategy (or T p
i -strategy) and suppose that there exists some β such

that α⌢⟨∞⟩ ⊆ β and β is an R-strategy that challenges α. If β challenges α at a stage s,

then β takes the w1 outcome for the first time. The strategies extending β⌢⟨w1⟩ will choose

witnesses at stage s, and in particular, none will challenge α. So, at most one strategy will

challenge α at stage s. Until α is able to match the newly added loops in G to meet the

challenge, α will take outcome wnα . R-strategies γ such that γ ⊇ α⌢⟨wnα⟩ will not challenge

α since wnα ̸= ∞.

Lemma 1.3.7. Suppose α is an Rq
e-strategy that is never initialized after stage s. Then α

can only challenge higher priority S-strategies and T -strategies at most once after stage s.

Proof. Suppose α is an Rq
e-strategy that is never initialized after stage s and suppose it

challenges all S-strategies and T -strategies β such that β⌢⟨∞⟩ ⊆ α. Because α is never

initialized again, if we ever return to α, it will take the s outcome as it can now diagonalize,

and will continue to take the s outcome at all subsequent α-stages. If we do not return to α,

α will not be able to challenge any higher priority S-strategies or T -strategies after stage s

since it will never be eligible to act again.

Lemma 1.3.8. At most one strategy α enumerates numbers at any stage.

Proof. Suppose numbers are enumerated at a stage s and α is the highest priority strategy

which enumerates a number. α must either be for an Rq
e or an Np

e requirement. If α is an

Np
e -strategy, it will take the s outcome for the first time, and if α is an Rq

e-strategy, it will

either take the w1 outcome or the s outcome for the first time. In either case, the remaining

strategies which act at stage s will act by simply defining their parameters and taking the w0

outcome. Therefore, α is the only strategy to enumerate a number at stage s.
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Lemma 1.3.9. Let α be a T p
i -strategy that defines gDp

α [sm] on the 2mth and (2m + 1)st

components of G at stage sm. Until α is initialized (if ever), only strategies β such that

α⌢⟨∞⟩ ⊆ β can enumerate a number n ≤ uα,m at any stage t ≥ sm.

Proof. Let α be such a T p
i -strategy. If α is not challenged, after defining gDp

α [sm] on the 2mth

and (2m+ 1)st components of G at stage sm, it takes the ∞ outcome. Hence, all strategies

extending α⌢⟨wk⟩ for some k or to the right of α are initialized. These strategies will choose

new parameters larger than uα,m when they are next eligible to act. They are also the only

strategies not extending α⌢⟨∞⟩ which can enumerate numbers without initializing α, so it

suffices to show that they will not enumerate numbers below uα,m. Let β be such a strategy.

If β is an Np′

e′ -strategy, then it can only enumerate its parameter xβ into Ap′ , and it was

chosen such that xβ > uα,m. If β is an Rq
e-strategy then it enumerates two types of numbers:

vβ and uγ,nβ
for any T p′

i′ -strategy such that γ⌢⟨∞⟩ ⊆ β and p′ < q. Since vβ will be chosen

large after stage sm, we have that vβ > uα,m. Since β ⊇ α⌢⟨wm⟩, we have that nβ > uα,m

because nβ was chosen to be large after uα,m was defined. In particular, when nβ is chosen,

γ cannot have defined uγ,nβ
since nβ is large, so when γ defines uγ,nβ

later, it must satisfy

uγ,nβ
> nβ. Hence uγ,nβ

> uα,m.

In the case in which α defines gDp
α [sm] on the mentioned components while it is being

challenged, then strategies β which extend α⌢⟨wk⟩ have been initialized before when α took

the ∞ outcome at some previous stage. So, when β acts again, it defines new parameters

larger than uα,m, and the rest of the argument is largely the same as above.

Lemma 1.3.10. Let α be a T p
i -strategy that takes a wk outcome at a stage s. Let t be

the next α-stage. Unless α has been initialized, Dp[t] ↾ ⟨uα,m, p⟩ = Dp[s] ↾ ⟨uα,m, p⟩ for all

m < nα, and so gDp
α [t] remains defined on the 2mth and (2m+ 1)st components of G for all

m < nα.

Proof. This follows immediately from Lemma 1.3.9.

25



1.3 PROOF OF THEOREM 1.1.10

Lemma 1.3.11. Let α be a T p
i -strategy. If α defines gDp

α on the 2mth and (2m + 1)st

components of G at stage s, then lm[s] < uα,m[s] where lm[s] is the max use of the edges in

the (5m+ 1)- and (5m+ 2)-loops in the copies of the 2mth and (2m+ 1)st components of G

in MDp

i and ⟨uα,m[s], p⟩ is the Dp-use of gDp
α [s] on these components. Furthermore, for all

α-stages t > s, we have uα,m[t] ≥ uα,m[s] > lm[s] = lm[t] unless these components in MDp

i

are injured or α is initialized.

Proof. When α initially defines gDp
α on those components in Case 2 or Case 3 of its strategy,

it chooses uα,m[s] large, and so uα,m[s] > lm[s].

Consider an α-stage t > s and assume α has not been initialized and the components in

MDp

i remain intact. Since the Dp-use on the edges in the components remains the same,

we have lm[t] = lm[s], and so (Dp ↾ lm[s])[t] = (Dp ↾ lm[s])[s]. In particular, any update of

the value of nα in Case 2 or in Step 1 of Case 3 of the T p
i -strategy does not cause nα to

fall below m. Therefore, uα,m[t] either has the same value as in the previous α-stage, or is

updated by the preliminary action of Case 2 (and so is chosen large), or is redefined in Step

2 of Case 3 (to its value at the previous α-stage). In all cases, uα,m[t] ≥ uα,m[s].

Lemma 1.3.12. Let α be an Rq
e-strategy that acts in Case 2 at stage s by defining vα. Let

t > s be the next α-stage and assume α is not initialized before t.

(1) At stage t, for all S- and T -strategies β where β⌢⟨∞⟩ ⊆ α, fβ and g
Dp

β [t] is defined

on the 2nαth and (2nα + 1)st components of G. Furthermore, for T p
i -strategies β, the

minimum use of the computations gDp

β [t] on the (5nα +3)- and (5nα +4)-loops is greater

than vα.

(2) If q < p, then the Dp-use for gDp

β [t] on a2nα , a2nα+1, the (5nα + 1)-loops, (5nα + 2)-loops,

and the 2-loops in G is greater than vα.

Proof. For (1), since α took the w1 outcome at the last α-stage s and was not initialized

after, it is now in Case 3 at stage t. So in particular, it must be the case that α saw that

for all S- and T -strategies β where β⌢⟨∞⟩ ⊆ α that their parameters nβ have exceeded
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nα. In particular, if β is a T p
i -strategy, it extended its map g

Dp

β [s] on the (5nα + 3)- and

(5nα + 4)-loops in G with a large use uβ,nα . For each such β, we have that uβ,nα > vα.

Furthermore, we claim that β cannot be challenged by another R-strategy before stage t.

Suppose γ challenges β after β meets α’s challenge. If β⌢⟨∞⟩ ⊆ γ ⊂ α, then γ takes outcome

w1 when it challenges β, initializing α. If α ⊆ γ, then γ cannot act until after stage t.

For (2), if β was a T p
i -strategy where q < p and nβ > nα, then α enumerated uβ,nα into

Ap, causing the map gDp

β [s] to now be undefined on the entirety of the 2nαth and (2nα + 1)st

components of G. At stage t when α is eligible to act again, we have that β must have

recovered its map on a2nα , a2nα+1, the (5nα + 1)-loops, (5nα + 2)-loops, and the 2-loops in G

with a new large use uβ,nα > vα.

On the other hand, if nβ ≤ nα, when α challenged β, then g
Dp

β was not yet defined on

any of the loops in the 2nαth and (2nα + 1)st components. Therefore, when β defines gDp

β on

these components, it uses a large use on every loop.

Lemma 1.3.13. Let α be an Rq
e-strategy that acts in Case 2 at stage s by defining vα and

challenging higher priority S and T -strategies. If t is the next α-stage and α has not been

initialized, then Dq[t] ↾ ⟨vα, q⟩ + 1 = Dq[s] ↾ ⟨vα, q⟩ + 1. In particular, all of the loops in the

2nαth and (2nα + 1)st components of Bq remain intact.

Proof. At stage s, α takes the w1 outcome. By the proof of Lemma 1.3.8, no other strategy

enumerates numbers at stage s. Since the strategies extending α⌢⟨w1⟩ and to the right of

α choose new large parameters, none can enumerate a number below ⟨vα, q⟩ into Dq. If a

strategy β ⊆ α enumerates a number, the path moves left, initializing α. Therefore, unless α

is initialized, no number below ⟨vα, q⟩ can enter Dq before stage t.

Lemma 1.3.14. Let α be an Rq
e-strategy that acts in Case 3 at stage s and takes the s

outcome. Unless α is initialized, no number below the uses of the loops in the 2nαth and

(2nα + 1)st components of Bq or below mq is enumerated into Dq after stage s.

Proof. The proof of this lemma is almost identical to the proof of Lemma 1.3.5.
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We now state and prove the verification lemma for our construction.

Lemma 1.3.15 (Main Verification Lemma). Let TP = lim infs ps be the true path of the

construction, where ps denotes the current true path at stage s of the construction. Let

α ⊂ TP .

(1) If α is an Np
e -strategy, then there is an outcome o and an α-stage tα such that for all

α-stages s ≥ tα, α takes outcome o where o ranges over {s, w0}.

(2) If α is an Se-strategy, then either α takes outcome ∞ infinitely often or there is an

outcome wn and a stage t̂ such that for all α-stages s > t̂, α takes outcome wn. If

G ∼= Me, then α takes the ∞ outcome infinitely often and α defines a partial embedding

fα : G → Me which can be extended to a computable isomorphism f̂α : G → Me.

(3) Let α be a T p
i -strategy. If G ∼= MDp

i , then α takes the ∞ outcome infinitely often, and α

defines a partial embedding gDp
α : G → MDp

i which can be extended to a Dp-computable

isomorphism ĝDp
α : G → MDp

i .

(4) If α is an Rq
e-strategy, then there is an outcome o and an α-stage tα such that for all

α-stages s ≥ tα, α takes outcome o where o ranges over {s, w1, w0}.

In addition, α satisfies its assigned requirement.

Proof. We first prove (1). Let α ⊆ TP be an Np
e -strategy and let s0 be the least stage such

that for all s ≥ s0, α ≤L ps. Let xα be its parameter at stage s0. Suppose that at every

α-stage s ≥ s0, either ΦDp
e (xα)[s] ↑ or ΦDp

e (xα)[s] ↓̸= 0. Then, α takes the w0 outcome at

every α-stage s ≥ s0. Furthermore, ΦDp
e (xα) either diverges or converges to a number other

than 0. Since xα ̸∈ Ap, α has met Np
e .

Otherwise, there is some α-stage t > s0 where ΦDp
e (xα)[t] ↓= 0. At stage t, α enumerates

xα into Ap and takes the s outcome. Since α is never initialized, it takes the s outcome at

every α-stage s ≥ t. Furthermore, by Lemma 1.3.5 we have that

ΦDp
e (xα) = ΦDp

e (xα)[t] = 0 ̸= 1 = Ap(xα),
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and so Np
e is satisfied.

For (2), let α ⊆ TP be an Se-strategy and let s0 be the least stage such that for all s ≥ s0,

α ≤L ps. Suppose that α only takes the ∞ outcome finitely often. Fix an α-stage s1 > s0

such that α does not take the ∞ outcome at any α-stage s ≥ s1. Suppose that α takes the

wn outcome at stage s1. There are two cases to consider.

If α is not challenged at stage s1, then α acts as in Case 3 of the Se-strategy. Since α

cannot be challenged by a requirement extending α⌢⟨wn⟩, α remains in Case 3 at future

α-stages unless it finds copies of the 2nth and (2n+ 1)st components of G in Me. However, if

it finds these copies, it would take the ∞ outcome, and so α must not ever find these copies.

Hence, α takes the wn outcome at every α-stage s ≥ s1. Moreover, Me does not contain

copies of the 2nth and (2n+ 1)st components of G and so Me is not isomorphic to G.

If α is challenged at stage s1, then α acts as in Case 2 of the Se-strategy. By a similar

argument to the one above, α can never meet this challenge by finding images for the new

loops in the 2nth and (2n+ 1)st components of G. Therefore, Me ̸∼= G and α takes the wn

outcome for all α-stages s ≥ s1.

From these two cases, it follows that if G ∼= Me, then α must take the ∞ outcome

infinitely often. Let nα[s] denote the value of nα at the end of stage s (i.e., nα could be

possibly redefined by a challenging strategy during stage s). We claim that the value of nα[s]

goes to infinity as s goes to infinity. Suppose that α takes the ∞ outcome at a stage s > s0.

Either nα[s] = nα[s− 1] + 1 or nα[s] = nβ[s] for some R-strategy β where α⌢⟨∞⟩ ⊆ β and

nβ[s] ≤ nα[s− 1]. There can only be finitely many such β with nβ[s] ≤ nα[s− 1]. Once those

strategies have challenged α (if ever), the value of nα cannot drop below nα[s− 1] again. As

α takes the ∞ outcome infinitely often, it follows that nα[s] goes to infinity as s increases.

Let fα = ⋃
s≥s0

fα[s] be the limit of the partial fα[s] embeddings for s ≥ s0. By Lemma

1.3.3, it remains to show that fα can be computably extended to an embedding f̂α which is

defined on all of G. Note that no strategy β ⊆ α can add loops to G after stage s0 or else

the current true path would move to the left of α in the tree. Since nα[s] → ∞ as s → ∞,
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for each k, there is an α-stage sk at which the nα parameter starts with value k and α takes

the ∞ outcome. At this stage, α found a copy of the 2kth and (2k + 1)st components of G

(which consist of at least the initial set of loops) in Me and defined fα[sk] on these loops.

Therefore, fα is defined on all of the initial loops attached to each a2k and a2k+1.

Only R-strategies β such that α⌢⟨∞⟩ ⊆ β can add loops to components on which fα is

already defined. If such a strategy β adds loops as in Case 3 of its action, then it challenges

α to find copies of these new loops. Since α takes the ∞ outcome infinitely often, it meets

this challenge and extends fα to be defined on the loops created by β. Then, β adds the

homogenizing loops as in Case 4 of its action. If G ∼= Me, then these homogenizing loops

will have copies in Me. Suppose the 2nth and (2n+ 1)st components of G have homogenizing

loops, then because G ∼= Me, then only the nodes fα(a2n) and fα(a2n+1) in Me will have

copies of the respective homogenizing loops. So, we can computably extend fα to f̂α by

mapping the homogenizing loops to these copies, and thus f̂α is the computable isomorphism

which satisfies the Se requirement.

For (3), let α ⊆ TP be a T p
i -strategy and let s0 be the least stage such that α ≤L ps for

all s ≥ s0. If G ̸∼= MDp

i , then we satisfy the T p
i requirement trivially. So, suppose G ∼= MDp

i .

We claim that α takes the ∞ outcome infinitely often and that nα[s] → ∞. By Lemma

1.3.4, the true copies of each pair of components will eventually appear in MDp

i and become

the oldest copies of these components. If gDp
α maps the 2mth and (2m+ 1)st components of

G to fake copies in MDp

i , then by Lemma 1.3.11, when a number less than lm[s] enters Dp to

remove the fake copies, then the map gDp
α [s] also becomes undefined on those components.

Therefore, for each n, α will eventually define gDp
α [s] correctly on the 2nth and (2n + 1)st

components of G, mapping them to the true copies in MDp

i .

For the same reason, α will also meet each challenge after s0 by an R-strategy extending

α⌢⟨∞⟩. It follows that nα[s] → ∞ as s → ∞ and that gDp
α = ⋃

s≥s0
gDp

α [s] will correctly map

all loops in G into MDp

i except the homogenizing loops added in Case 3 of an R-strategy.

It remains to show that we can extend gDp
α in a Dp-computable way to an embedding
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ĝDp
α defined on all of G. Using the Dp oracle, we can tell when gDp

α [s] has correctly defined

the original (5m+ 1)- and (5m+ 2)-loops from G into MDp

i , as well as the (5m+ 3)- and

(5m + 4)-loops added (if ever) to G by an R-requirement. The Dp oracle will then tell us

when the correct homogenizing loops show up in MDp

i (assuming that they were added to

G), so that we can extend gDp
α in a Dp-computable manner.

For (4), suppose α ⊂ TP is an Rq
e-strategy and let nα = n be its parameter. Let s0 be

the least stage such that α ≤L ps for all s ≥ s0. If α remains in the first part of Case 2 from

its description for all α-stages s ≥ s0, then Rq
e is trivially satisfied because ΦDq

e is not an

isomorphism between G and Bq, and α takes the w0 outcome cofinitely often.

Otherwise, there is an α-stage s1 > s0 such that ΦDq
e [s1] maps the 2nth and (2n+ 1)st

components of G isomorphically into Bq. Then, α carries out all actions described in the

second part of Case 2. In particular, it defines its target number vα after enumerating all

uses uγ,n (if they exist) for any T p
i -strategy γ of higher priority with q < p in P . α’s challenge

will eventually be met by all β such that β⌢⟨∞⟩ ⊂ α since β⌢⟨∞⟩ ⊂ TP , and so let s2 > s1

be the next α-stage. By Lemma 1.3.13, Dq[s2] ↾ ⟨vα, q⟩ + 1 = Dq[s1] ↾ ⟨vα, q⟩ + 1, so the

loops added to Bq at stage s1 remain intact. At stage s2, α enumerates vα into Aq, moves the

(5n+ 3)- and (5n+ 4)-loops in Bq, and takes the s outcome at the end of this stage and at

every future α-stage. By Lemma 1.3.12, for every T p
i -strategy β with β⌢⟨∞⟩ ⊆ α, we have

that

• g
Dp

β [s2 + 1] is now undefined on the (5nα + 3)- and (5nα + 4)-loops in the 2nαth and

(2nα + 1)st components of G, and

• if q < p, then gDp

β [s2 + 1] is now undefined on the entirety of the 2nαth and (2nα + 1)st

components of G.

Since α ⊂ TP , α will never get initialized again. By Lemmas 1.3.13 and 1.3.14, we preserve

Aq ↾ mα. Recall that mα is the use of the computation of ΦDq
e [s1] where ΦDq

e [s1](a2n) = bq
2n

and ΦDq
e [s1](a2n+1) = bq

2n+1. So we have that ΦDq
e = ΦDq

e [s1], and so ΦDq
e (a2n) = bq

2n and
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ΦDq
e (a2n+1) = bq

2n+1. However, a2n is connected to a cycle of length 5n + 3 whereas b2n is

connected to a cycle of length 5n+ 4, and so ΦDq
e cannot be a Dq-computable isomorphism

between G and Bq.

1.4 Embedding lattices

The techniques used in the proof of Theorem 1.1.10 to make G computably categorical or not

relative to a degree are compatible with techniques to create minimal pairs of c.e. degrees. In

fact, we can show that we can embed the four element diamond lattice into the c.e. degrees

in the following way.

Theorem 1.4.1. There exists a computable computably categorical directed graph G and

c.e. sets X0 and X1 such that

(1) X0 and X1 form a minimal pair,

(2) G is not computably categorical relative to X0,

(3) G is computably categorical relative to X1, and

(4) G is computably categorical relative to X0 ⊕X1.

Proof. We begin by listing the requirements needed for this construction.

Si : if G ∼= Mi, then there exists a computable isomorphism fi : G → Mi

Ti : if G ∼= MX1
i , then there exists an X1-computable isomorphism gX1

i : G → MX1
i

Re : ΦX0
e : G → B is not an isomorphism

Ji : if G ∼= MX0⊕X1
i , then there exists an (X0 ⊕X1)-computable isomorphism

hX0⊕X1
i : G → MX0⊕X1

i

Ne : if ΦX0
e = ΦX1

e is total, then there exists a computable function ∆e with ∆e = ΦX .
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Here, B is an X0-computable graph that we will build alongside G, similar to how we

built the copies of G in the proof of Theorem 1.1.10. We also make a note that in the usual

construction of a minimal pair, we would need requirements to ensure that X0 and X1 are

not computable sets. However, assuming that we meet all the listed requirements above,

these conditions are indirectly satisfied. In particular, X0 cannot be computable since G

is not computably categorical relative to X0. X1 also cannot be computable because if we

assume that it is, then X0 ⊕ X1 ≡T X0, and so we have that G is computably categorical

relative to X0 if and only if it is computably categorical relative to X0 ⊕X1. But, by the Re

requirements, G is not computably categorical relative to X0 and by the Ji requirements, it

is computably categorical relative to X0 ⊕X1.

We will have largely the same strategies to meet the Si requirements (section 1.2.2), the

Ti and Ji requirements (section 1.2.3), and the Re requirements (section 1.2.4). We will

reintroduce these strategies with the new notation to match the requirements listed above.

Afterwards, we detail the formal strategies for the new Ne requirements.

1.4.1 Strategies and outcomes

Re-strategies and outcomes

We begin this section by outlining the formal strategies and outcomes for the Re requirement.

Compared to the strategy outlined in section 1.3.6, the Re-strategies are simpler since they

are only assigned a singular c.e. set X0. That is, the X0-uses become singular numbers and

not numbers coded by a pair since there are no Aq or Dq sets.

We will also make similar adjustments to our (X0 ⊕X1)-uses by saying that if we have

a use u for an (X0 ⊕ X1)-computation that we want to enumerate into X1 to destroy a

computation, then we define the (X0 ⊕X1)-use to be 2u+ 1. Then by enumerating 2u+ 1

into X0 ⊕X1, we also enumerate u into X1 to destroy the relevant computation.

Additionally, in Case 2 below, when an Re-strategy has to enumerate a use uγ,n, the only

such γ it needs to worry about are Ji-strategies γ where γ⌢⟨∞⟩ ⊆ α. Here, the Ji-strategies
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play the role of the T p
i -strategies for q < p with q = X0 and p = X0 ⊕X1 as in the previous

construction.

Let α be an Re-strategy eligible to act at stage s.

Case 1: If α is first eligible to act at stage s or has been initialized, define the parameter

nα = n to be large and take outcome w0.

Case 2: If we are not in Case 1 and α took outcome w0 at the last α-stage, check

whether ΦX0
e [s] maps the 2nth and (2n+ 1)st components of G isomorphically into B. If not,

take outcome w0.

If so, set mα to be the maximum X0-use of these computations. Let vα be large. Add a

(5n+ 3)-loop to a2n in G and to b2n in B (with X0-use vα) and add a (5n+ 4)-loop to a2n+1

in G and to b2n+1 in B (with X0-use vα).

For each J-strategy γ where γ⌢⟨∞⟩ ⊆ α, enumerate the use uγ,n into X1 (and hence

2uγ,n + 1 into X0 ⊕ X1), and challenge γ. Note that if nγ < nα, then there is no uγ,n to

enumerate into X1. For each T - and S-strategy β where β⌢⟨∞⟩ ⊆ α, challenge β and reset

nβ = nα if nβ > nα. Otherwise, leave nβ as it is. For each J-strategy β where β⌢⟨∞⟩ ⊆ α,

reset nβ to be the least m ≤ nα such that hX0⊕X1
β does not match all of the 2mth and

(2m+ 1)st components of G. Take outcome w1.

Case 3: If α took outcome w1 at the last α-stage, then enumerate vα into X0, move the

(5n+ 3)-loop in B from b2n to b2n+1, and move the (5n+ 4)-loop in from b2n+1 to b2n. Attach

a (5n + 1)-loop to a2n+1 and b2n+1 and a (5n + 2)-loop to a2n and b2n. Let the X0-use of

these new loops in B be large. Take outcome s.

Case 4: If α took outcome s at the last α-stage and has not been initialized, then take

outcome s.

Ti-strategies and outcomes

In the previous construction for Theorem 1.1.10, we had the T p
i -strategies where p is an

element of the poset P = (P,≤). For the minimal pair construction, we have that the Ti and

34



1.4 EMBEDDING LATTICES

Ji-strategies correspond to T p
i -strategies where p = X1 in the former and p = X0 ⊕X1 in the

latter. We now state the formal strategies for the Ti requirements, with comments on any

differences from the previous construction.

Let α be a Ti-strategy eligible to act at stage s. Recall that the Ti requirement is to

ensure that G is computably categorical relative to our c.e. set X1.

Case 1: If α is acting for the first time or has been initialized since the last α-stage, set

nα = 0, define gX1
α [s] to be the empty function, and take the w0 outcome.

Case 2: α is currently challenged by an Re-strategy β where α⌢⟨∞⟩ ⊆ β. Let s0 be the

stage at which β challenged α. When β challenged α at stage s0, it redefined nα = nβ.

We now perform the main action in this case. If gX1
α is already defined on the (5nα + 1)-

and (5nα + 2)-loops of the 2nαth and (2nα + 1)st components in G, then α searches for the

oldest and lexicographically least copies of the (5nα + 3)- and (5nα + 4)-loops in MX1
i [s]. If

gX1
α is not currently defined on any of the loops in the 2nαth and (2nα + 1)st components of

G, then α searches for the oldest and lexicographically least copies of these components in

MX1
i [s]. In either case, if such copies are found, extend gX1

α [s] to map onto these copies with

a large X1-use uα,nα , increment nα by 1, and check if nα > nβ for this new nα. If yes, take

the ∞ outcome and declare β’s challenge to α to be met. If not, then take the wnα outcome

and let β’s challenge to α remain active.

Case 3: α is not currently challenged by an Re-strategy. Let t be the last α-stage. In

this case, α defined gX1
α [t] on the 2mth and (2m + 1)st components with X1-uses uα,m for

m < nα. Let lm be the max X1-use for the computation of a loop in the image of the 2mth

and (2m+ 1)st components under gX1
α [t].

Step 1: If there is an m < nα such that X1[t] ↾ lm ̸= X1[s] ↾ lm, then let m be the least

such value. Note that for m ≤ m∗ < nα, the map gX1
α is now undefined on the 2m∗th and

(2m∗ + 1)st components of G. The loops in the image of the 2kth and (2k + 1)st components

of G under gX1
α [t] for k < m remain in MX1

i [s]. Update nα = m.

Step 2: By the update in Step 1, we have that for each m < nα that X1[t] ↾ lm = X1[s] ↾
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lm. For each m < nα, if any, where X1[t] ↾ uα,m ̸= X1[s] ↾ uα,m, set gX1
α [s] = gX1

α [t] on the

loops in G in the 2mth and (2m+ 1)st components with the same X1-use as at stage t.

Step 3: We can now perform the main action of this case. α searches for the oldest and

lexicographically least copies of the 2nαth and (2nα + 1)st components of G in MX1
i [s]. If

no copies are found, leave gX1
α and nα unchanged and take outcome wnα . Otherwise, extend

gX1
α by mapping the loops in the 2nαth and (2nα + 1)st components of G to their copies in

MX1
i with an X1-use uα,nα where uα,nα is chosen large, increment nα by 1, and take the ∞

outcome.

We make a note that for the X1-uses u defined via the Ti-strategy have a corresponding

(X0 ⊕X1)-use which is 2u+ 1. So, in the case where the use u must be enumerated into X1,

we can do this by enumerating 2u+ 1 into X0 ⊕X1.

Note that the change in X1 in Case 3 can be caused by an R-strategy issuing a challenge

to some higher priority J-strategy. Unlike in the poset case, however, any X0-changes will

not cause changes in any MX1
i since X0 and X1 are incomparable c.e. sets, and so we do

not need our Ti-strategies to lift its uses to account for any diagonalizations performed by

some R-strategy. That is, the preliminary step in Case 2 in section 1.3.5 is removed for the

Ti-strategies in the minimal pair construction.

Ji-strategies and outcomes

We now give the formal description of the Ji-strategies and outcomes. In particular, these

strategies must account for any diagonalizations in B caused by some lower priority R-strategy

since B is an X0- and thus (X0 ⊕X1)-computable directed graph.

Let α be a Ji-strategy eligible to act at stage s. Recall that the Ji requirement is to

ensure that G is computably categorical relative to X0 ⊕X1.

Case 1: If α is acting for the first time or has been initialized since the last α-stage, set

nα = 0, define hX0⊕X1
α [s] to be the empty function, and take the w0 outcome.

Case 2: α is currently challenged by an Re-strategy β where α⌢⟨∞⟩ ⊆ β. Let s0 be the
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stage at which β challenged α. When β challenged α at stage s0, it redefined nα to equal the

least m ≤ nβ such that hX0⊕X1
α is not fully defined on the 2mth and (2m+ 1)st components

of G.

If s is the first α-stage since s0 and nα was greater than nβ at stage s0, then we have to

perform a preliminary action. In this case, β enumerated uα,nβ
into X1 (and so 2uα,nβ

+ 1 is

enumerated into X0 ⊕X1), causing the map hX0⊕X1
α [s0] to become undefined on the 2nβth

and (2nβ +1)st components of G. Redefine hX0⊕X1
α [s] to be equal to hX0⊕X1

α [s0] on the 2-loops,

(5nβ + 1)-loops, and (5nβ + 2)-loops in these components, and choose a new large number

2uα,nβ
+ 1 as the (X0 ⊕X1)-use for this computation. This ends the preliminary step.

We now perform the main action in this case. If nα = nβ and hX0⊕X1
α is already defined

on the (5nα + 1)- and (5nα + 2)-loops of the 2nαth and (2nα + 1)st components in G, then α

searches for the oldest and lexicographically least copies of the (5nα + 3)- and (5nα + 4)-loops

in MX0⊕X1
i [s]. If hX0⊕X1

α is not currently defined on any of the loops in the 2nαth and

(2nα + 1)st components of G, then α searches for the oldest and lexicographically least copies

of these components in MX0⊕X1
i [s]. In either case, if such copies are found, extend hX0⊕X1

α [s]

to map onto these copies with a large use 2uα,nα + 1, increment nα by 1, and check if nα > nβ

for this new nα. If yes, take the ∞ outcome and declare β’s challenge to α to be met. If not,

then take the wnα outcome and let β’s challenge to α remain active.

Case 3: α is not currently challenged by an Re-strategy. Let t be the last α-stage. In

this case, α defined hX0⊕X1
α [t] on the 2mth and (2m + 1)st components with use uα,m for

m < nα. Let lm be the max (X0 ⊕X1)-use for the computation of a loop in the image of the

2mth and (2m+ 1)st components under hX0⊕X1
α [t].

Step 1: If there is an m < nα such that (X0 ⊕X1)[t] ↾ lm ̸= (X0 ⊕X1)[s] ↾ lm, then let m

be the least such value. Note that for m ≤ m∗ < nα, the map hX0⊕X1
α is now undefined on the

2m∗th and (2m∗ + 1)st components of G. The loops in the image of the 2kth and (2k + 1)st

components of G under hX0⊕X1
α [t] for k < m remain in MX0⊕X1

i [s]. Update nα = m.

Step 2: By the update in Step 1, we have that for each m < nα that (X0 ⊕X1)[t] ↾ lm =

37



1.4 EMBEDDING LATTICES

(X0 ⊕X1)[s] ↾ lm. For each m < nα, if any, where (X0 ⊕X1)[t] ↾ uα,m ̸= (X0 ⊕X1)[s] ↾ uα,m,

set hX0⊕X1
α [s] = hX0⊕X1

α [t] on the loops in G in the 2mth and (2m + 1)st components with

the same use as at stage t.

Step 3: We can now perform the main action of this case. α searches for the oldest and

lexicographically least copies of the 2nαth and (2nα + 1)st components of G in MX0⊕X1
i [s].

If no copies are found, leave hX0⊕X1
α and nα unchanged and take outcome wnα . Otherwise,

extend hX0⊕X1
α by mapping the loops in the 2nαth and (2nα + 1)st components of G to their

copies in MX0⊕X1
i with use 2uα,nα + 1 where uα,nα is chosen large, increment nα by 1, and

take the ∞ outcome.

Unlike the Ti-strategies, we need to perform the preliminary step in Case 2 for the Ji-

strategies to account for any diagonalizations performed by an R-strategy on B-components.

This preliminary steps allow our Ji-strategies α to lift their uses so that even if the positions

of the (5nβ + 3)- and (5nβ + 4)-loops in B are switched by some R-strategy β, α is able to

redefine hX0⊕X1
α on the affected G-components.

Ne-strategies and outcomes

The Ne requirements are required so that X0 and X1 form a minimal pair, and we will use

the standard strategy to satisfy each Ne. Let α be an Ne-strategy eligible to act at stage s.

Case 1: If α is first eligible to act at stage s or was initialized since the last α-stage,

define its parameter nα = 0 and take the w0 outcome.

Case 2: If α took the wnα outcome at the previous α-stage, check if

ΦX0
e ↾ (nα + 1) = ΦX1

e ↾ (nα + 1).

If the equality does not hold, continue taking the wnα outcome with the nα parameter

unchanged. If the equality holds, set ∆e(nα) = ΦX0
e (nα), increment nα by 1, and take the ∞

outcome.

In the verification, we will show that when we define ∆e(nα) = ΦX0
e (nα) at a stage s, then
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for any stage t > s, at least one of ΦX0
e (nα) or ΦX1

e (nα) is defined and equal to ∆e(nα).

1.4.2 Construction

Let Λ = {∞ <Λ · · · <Λ w2 <Λ s <Λ w1 <Λ w0} be the set of outcomes, and let T = Λ<ω be

our tree of strategies. The construction will be performed in ω many stages s.

We define the current true path ps, the longest strategy eligible to act at stage s,

inductively. For every s, λ, the empty string, is eligible to act at stage s. Suppose the strategy

α is eligible to act at stage s. If |α| < s, then follow the action of α to choose a successor

α⌢⟨o⟩ on the current true path. If |α| = s, then set ps = α. For all strategies β such that

ps <L β, initialize β (i.e., set all parameters associated to β to be undefined). If β <L ps and

|β| < s, then β retains the same values for its parameters.

1.4.3 Verification

Before we prove the main verification lemma for this construction, we first prove the following

important lemma regarding the Ne-strategies.

Lemma 1.4.2. At most one strategy α enumerates numbers at any stage.

Proof. Suppose α is the highest priority strategy at stage s which enumerates a number into

a set. Then α is an R-strategy that either takes the w1 or s outcome for the first time. In

both cases, all strategies extending α on either the w1 or s outcome will act by defining their

parameters to be large and taking the w0 outcome. Hence, α is the only strategy which

enumerates a number at stage s.

Lemma 1.4.2 allows the Ne-strategies to succeed because at every stage, we can only at

most lose one of the computations ΦX0
e (n) or ΦX1

e (n) for each n. So if for an Ne-strategy α

we have that if ΦX0
e = ΦX1

e is total, then the ∆e will be defined for all n ∈ ω at the end of

the construction.
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Before we state and prove the main verification lemma, we would like to comment on

how many of the key lemmas proven in section 1.3.7 carry over to this construction with as

analogous lemmas with largely the same proofs. For example, we have a version of Lemma

1.3.5 for the Pe-strategies which holds by virtually the same proof. We also have analogues

of Lemmas 1.3.9, 1.3.10, and 1.3.11 for our Ti- and Ji-strategies in this construction.

We now state and prove the main verification lemma for this construction.

Lemma 1.4.3 (Main Verification Lemma). Let TP = lim infs ps be the true path of the

construction, where ps denotes the current true path at stage s of the construction. Let

α ⊂ TP .

(1) If α is an Si-strategy, then either α takes outcome ∞ infinitely often or there is an

outcome wn and a stage tα such that for all α-stages s > tα, α takes outcome wn. If

G ∼= Mi, then α takes the ∞ outcome infinitely often and α defines a partial embedding

fα : G → Mi which can be extended to a computable isomorphism f̂α : G → Mi.

(2) If α is a Ti-strategy or Ji-strategy, then either α takes outcome ∞ infinitely often or

there is an outcome wn and a stage tα such that for all α-stages s > tα, α takes outcome

wn. If G ∼= MX1
i (G ∼= MX0⊕X1

i ), then α takes the ∞ outcome infinitely often, and

defines a partial embedding gX1
α : G → MX1

i (hX0⊕X1
α : G → MX0⊕X1

i ) which can be

extended to an X1-computable isomorphism ĝX1
α : G → MX1

i ((X0 ⊕X1)-computable

isomorphism ĥX0⊕X1
α : G → MX0⊕X1

i ).

(3) If α is an Re-strategy, then there is an outcome o and an α-stage tα such that for all

α-stages s ≥ tα, α takes outcome o where o ranges over {s, w1, w0}.

(4) If α is an Ne-strategy, then either α takes the ∞ outcome infinitely often or there is an

outcome wn and an α-stage tα such that for all α-stages s > tα, α takes outcome wn.

In the former, α will define a total computable function ∆e such that ∆e(n) = ΦX0(n)

for all n ∈ ω.
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In addition, α satisfies its assigned requirement.

Proof. The arguments for (1)-(3) are similar to the arguments given for the proof of Lemma

1.3.15(2)-(4), so we only give the proof for (1) and (4).

For (4), let α ⊆ TP be an Ne-strategy, and let s0 be the least stage such that for all

s ≥ s0, α ≤L ps. Since α is not initialized after stage s0, the value of its parameter nα

can only increase. So if α takes the wn outcome at a stage t > s0, it will never take a wl

outcome for l < n after stage t. Since α must take the ∞ outcome between taking distinct

wn outcomes, it follows that either α takes the ∞ outcome infinitely often or there is an n

such that α takes the wn outcome at cofinitely many α-stages.

If we have that ΦX0
e (k) ̸= ΦX1

e (k) for some k, then there exists some α-stage s′ ≥ s0 such

that for all t ≥ s′,

ΦX0
e [t] ↾ (k + 1) ̸= ΦX1

e [t] ↾ (k + 1).

After stage s′, α can never take the ∞ outcome after taking the wn outcome for any n ≥ k.

Therefore, α can only take the ∞ outcome finitely often and must take some wn outcome at

cofinitely many α-stages. Ne is trivially satisfied in this case.

If ΦX0
e = ΦX1

e is total, then for each n, there is a stage tn where

ΦX0
e [tn] ↾ (n+ 1) = ΦX1

e [tn] ↾ (n+ 1),

and also we have that

X0[tn] ↾ (use(ΦX0
e (n)) + 1) = X0 ↾ (use(ΦX0

e (n)) + 1)

and

X1[tn] ↾ (use(ΦX1
e (n)) + 1) = X1 ↾ (use(ΦX1

e (n)) + 1).

In this case, α takes the ∞ outcome infinitely often, and so it defined ∆e(n) for all n. We

now must verify that ∆e(n) = ΦX0
e (n) for all n. We claim that once ∆e(n) had been defined

at some stage t, then it will equal at least one of ΦX0
e (n) or ΦX1

e (n) at any stage after t.
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Let sn ≥ s0 be the first stage at which α defined its parameter to be equal to n. At any

stage s ≥ sn, only R-strategies β ⊇ α⌢⟨∞⟩ have the potential to destroy a computation

ΦXi
e (m) for m < n that exists at stage sn. This is because all β <L α can no longer enumerate

numbers into either Xi since α ≤L ps for all s ≥ s0 (and hence for all s ≥ sn), and all β such

that α <L β will pick their parameters and witnesses larger than the restraint placed on either

Xi. By Lemma 1.4.2, we have that at any stage, at most one number is enumerated into either

X0 or X1 (but not both). Hence, for all m < n, at least one of the computations ΦAi
e (m)

will be preserved from stage sn to sn+1. Since ΦA0
e = ΦA1

e is total, then ∆e(n) = ΦA0
e (n) for

all n by the above argument. Thus, Ne is satisfied, and this finishes our proof of Theorem

1.4.1.

1.5 Open questions

We end this chapter with some questions. One such question is whether we can embed bigger

lattices into the c.e. degrees where elements of the lattice are partitioned like in the poset

case. We restrict to distributive lattices since those are embeddable into the c.e. degrees.

Question 1.5.1. Let L = (L,∧,∨) be a computable distributive lattice and suppose we have

a computable partition L = L0 ⊔ L1. Does there exist a computable computably categorical

structure A and an embedding h of L into the c.e. degrees where A is computably categorical

relative to each degree in h(L0) and is not computably categorical relative to each degree in

h(L1)?

Another direction is to look for restrictive cases where our techniques from this chapter

do not work, which may entail looking outside of the c.e. degrees. A concrete question in this

direction is whether the result of Downey, Harrison-Trainor, and Melnikov about 0′′ can be

improved.
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1.5 OPEN QUESTIONS

Question 1.5.2. Is there a degree d < 0′′ such that if a computable structure A is computably

categorical relative to d, then for all c > d, A is computably categorical relative to c?
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Chapter 2

Extensions of categoricity relative to a

degree

2.1 Categoricity relative to a generic degree

Most of this chapter is devoted to a result concerning computable categoricity relative to a

generic degree. To motivate this result, we need some preliminary definitions.

Definition 2.1.1. A computable structure A is d-computably categorical if for all

computable B ∼= A, there exists a d-computable isomorphism between A and B.

Definition 2.1.2. A structure A has degree of categoricity d if A is d-computably

categorical and for all c, if A is c-computably categorical, then d ≤ c. A degree d is a

degree of categoricity if there is some structure with degree of categoricity d.

Finding a characterization of degrees of categoricity in the Turing degrees has recently

been an active topic in computable structure theory. For a survey paper of development up

until 2017, see [12]. Degrees which are not degrees of categoricity exist, with Anderson and

Csima producing several examples in [1]. One important example is the following.

Theorem 2.1.3 (Anderson, Csima [1]). There is a Σ0
2 degree that is not a degree of

categoricity.

44



2.2 INFORMAL STRATEGIES FOR THEOREM 2.1.7

In fact, the Σ0
2 degree that they built to witness this result turns out to be low for

isomorphism.

Definition 2.1.4. A degree d is low for isomorphism if for every pair of computable

structures A and B, A is d-computably isomorphic to B if and only if A is computably

isomorphic to B.

There are currently no known characterizations for LFI degrees, but they are connected

to the generic degrees. We quickly recall the definition of an n-generic set.

Definition 2.1.5. A set A is n-generic if for all Σ0
n set of strings S ⊆ 2<ω, there exists an

m such that either A ↾ m ∈ S or for all τ ⊇ A ↾ m, τ ̸∈ S. A degree d is n-generic if it

contains an n-generic set.

Theorem 2.1.6 (Franklin, Solomon [13]). Every 2-generic degree is low for isomorphism.

This tells us that for a 2-generic degree d, there exists no computable structure A where

A is not computably categorical but is computably categorical relative to d, one of the first

examples of a degree where techniques from [30] do not apply. Here, we will show that this

is optimal in the generic degrees, i.e., we can build a 1-generic degree d and a computable

structure A which is not computably categorical but is computably categorical relative to d.

Theorem 2.1.7. There exists a (properly) 1-generic G such that there is a computable

directed graph A where A is not computably categorical but is computably categorical

relative to G.

2.2 Informal strategies for Theorem 2.1.7

We first establish the informal strategies to meet three goals for our construction: to build a

1-generic set G, to make our graph A not computably categorical, and to make our graph A

computably categorical relative to G. We will then describe the interactions that occur when

we use all three strategies together, and how to resolve any issues that arise.
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2.2.1 Building a 1-generic G

We will build a 1-generic G via infinitely many strategies. Recall that for a set G to be

1-generic, we must have that for all e ∈ ω, there exists an initial segment σ of G where either

σ ∈ We or for all extensions τ ⊇ σ, τ ̸∈ We. That is, either G meets or avoids each c.e. set.

For each j ∈ ω, we meet the requirement

Rj : (∃σ ⊆ G)(σ ∈ Wj ∨ (∀τ ⊇ σ)(τ ̸∈ Wj)).

We will define sets G[s], where s is a stage number, which are a ∆0
2 approximation to our

1-generic G. Let α be the highest priority R-strategy. When it is first eligible to act at a

stage s0, α will define a parameter nα > 0 large (and so in particular, nα > s0), and its goal

is to find an extension τ0 ⊇ G[s0] ↾ nα where τ0 ∈ Wj. At each α-stage, it searches for such

an extension.

If α never finds such an extension, then we have that all extensions of G[s0] ↾ nα avoid

Wj and α succeeds trivially. If α finds an extension τ0 such that τ0 ∈ Wj at a stage s1 ≥ s0,

then α will define G[s1] = τ⌢
0 0ω and will initialize all lower priority strategies. In particular,

all lower priority R-strategies will now have to redefine new, larger parameters (and so these

parameters will be bigger than |τ0|) and must now use G[s1] as the current approximation of

G at the end of stage s1 for all stages s ≥ s1. We also have that G[s1] ↾ nα = G[s0] ↾ nα, so

α does not cause changes on numbers below nα.

If all Rj-strategies succeeded, then we define G = lim
s
G[s] to be our 1-generic set. This

limit exists by the observation in the previous paragraph.

2.2.2 Making A not computably categorical

We will build our directed graph A in stages. At stage s = 0, we set A = ∅. Then, at stage

s > 0, we add two new connected components to A[s] by adding the root nodes a2s and a2s+1

for those components, and attaching to each node a 2-loop (a cycle of length 2). We then

attach a (5s+ 1)-loop to a2s and a (5s+ 2)-loop to a2s+1. This gives us the configuration of
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loops:

a2s : 2, 5s+ 1

a2s+1 : 2, 5s+ 2.

The connected component consisting of the root node a2s with its attached loops will be

referred to as the 2sth connected component of A. During the construction, we might

add more loops to connected components of A, which causes them to have one of the two

following configurations:

a2s : 2, 5s+ 1, 5s+ 2, 5s+ 3

a2s+1 : 2, 5s+ 1, 5s+ 2, 5s+ 4

or

a2s : 2, 5s+ 1, 5s+ 2, 5s+ 3, 5s+ 4

a2s+1 : 2, 5s+ 1, 5s+ 2, 5s+ 3, 5s+ 4.

Note that the last configuration has that the 2sth and (2s+ 1)st components of A are

isomorphic, which may be necessary as a result of a special interaction between strategies of

all three types of requirements in this construction (see 2.2.4).

In order to make A not computably categorical, it is sufficient to construct a computable

copy B such that for all e ∈ ω, the computable function Φe is not an isomorphism between A

and B.

Similarly to A, we build the directed graph B in stages. At stage s = 0, we set B = ∅. At

stage s > 0, we add root nodes b2s and b2s+1 to B and attach to each one a 2-loop. Next,

we attach a (5s + 1)-loop to b2s and a (5s + 2)-loop to b2s+1. However, throughout the

construction, we may add new loops to specific components of B. For the 2sth and (2s+ 1)st

components of B, we have three possible final configurations of the loops. If we never start
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the process of diagonalizing using these components, then they will remain the same forever:

b2s : 2, 5s+ 1

b2s+1 : 2, 5s+ 2.

If we use these components to diagonalize against a computable map Φe, they will end in the

following configuration:

b2s : 2, 5s+ 1, 5s+ 2, 5s+ 4

b2s+1 : 2, 5s+ 1, 5s+ 2, 5s+ 3.

If these components were used to diagonalize against Φe and then certain interactions occur

between all three types of requirements, these components may have the final configuration:

b2s : 2, 5s+ 1, 5s+ 2, 5s+ 3, 5s+ 4

b2s+1 : 2, 5s+ 1, 5s+ 2, 5s+ 3, 5s+ 4.

For all e ∈ ω, we meet the following requirement

Pe : Φe : A → B is not an isomorphism.

To satisfy this requirement, we will diagonalize against Φe. Let α be a Pe-strategy.

When α is first eligible to act, it picks a large number nα, and for the rest of this strategy,

let n = nα. This parameter indicates which connected components of B will be used in the

diagonalization. At future stages, α checks if Φe maps the 2nth and (2n + 1)st connected

component of A to the 2nth and (2n+ 1)st connected component of B, respectively. If not,

α does not take any action. If α sees such a computation, it acts in the following way.

At this point, our connected components in A[s] and B[s] are as follows:

a2n : 2, 5n+ 1 b2n : 2, 5n+ 1

a2n+1 : 2, 5n+ 2 b2n+1 : 2, 5n+ 2.
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Since Φe looks like a potential isomorphism between A and B, α will now take action to

eventually force the true isomorphism to match a2n with b2n+1 and to match a2n+1 with b2n.

α adds a (5n+ 2)- and (5n+ 3)-loop to a2n and a (5n+ 1)- and (5n+ 4)-loop to a2n+1 in

A[s]. It also attaches a (5n+ 2)- and (5n+ 4)-loop to b2n and a (5n+ 1)- and (5n+ 3)-loop

to b2n+1 in B[s]. Our connected components in A[s] and in B[s] are now:

a2n : 2, 5n+ 1, 5n+ 2, 5n+ 3 b2n : 2, 5n+ 1, 5n+ 2, 5n+ 4

a2n+1 : 2, 5n+ 1, 5n+ 2, 5n+ 4 b2n+1 : 2, 5n+ 1, 5n+ 2, 5n+ 3.

For all higher priority S-strategies β such that β⌢⟨∞⟩ ⊆ α, α enumerates the use uβ,nα

into G and sets nβ = nα. This enumeration occurs because if we have that β⌢⟨∞⟩ ⊆ α, then

α believes β will define a total function fG
β on A. Therefore, α doesn’t restart when β extends

its definition of fG
β and so this map may be defined on the 2nαth and (2nα + 1)st components

of A when α acts. In this case, fG
β [s− 1] maps the 2nαth and (2nα + 1)st components of A

to their copies in MG
i with some use uβ,nα . We will choose this use carefully so that we know

uβ,nα ̸∈ G[s− 1], and in fact, uβ,nα ̸∈ G[t] for all t < s. This allows α to enumerate the use

uβ,nα into G[s] to destroy the fG
β computation on the 2nαth and (2nα + 1)st components in

A.

We will refer to these two actions as α issuing a challenge to β. α now takes the

outcome w2. If by the next α-stage we have that α has not been initialized, then it takes the

success outcome s. By α’s actions above, we have that Φe(a2n) = b2n and Φe(a2n+1) = b2n+1,

and so Φe fails to be a computable isomorphism between A and B.

2.2.3 Being computably categorical relative to G

Since we want to make A computably categorical relative to our 1-generic G, we must define

embeddings using G as an oracle. Additionally, we are looking at (partial) G-computable

directed graphs MG
i with domain ω whose edge relation is given by ΦG

i . Any changes in

initial segments of G can cause changes for both our partial G-computable embeddings and
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in MG
i throughout the construction.

We define the following terms to keep track of certain finite subgraphs which appear and

may remain in MG
i throughout our construction.

Definition 2.2.1. Let C0 and C1 be isomorphic finite distinct subgraphs of MG
i [s]. The

age of C0 is the least stage t ≤ s such that all edges in C0 appear in MG
i [t] and remained

in MG
i [s′] for all t ≤ s′ ≤ s, denoted by age(C0). We say that C0 is older than C1 when

age(C0) ≤ age(C1).

We say that C0 is the oldest if for all finite distinct subgraphs C ∼= C0 of MG
i [s],

age(C0) ≤ age(C).

Definition 2.2.2. Let C0 = ⟨a0, a1, . . . , ak⟩ and C1 = ⟨b0, b1, . . . , bk⟩ be isomorphic finite

distinct subgraphs of MG
i [s] with a0 < a1 < · · · < ak and b0 < b1 < · · · < bk. We say that

C0 <lex C1 if for the least j such that aj ̸= bj, aj < bj.

We say that C0 is the lexicographically least if for all finite distinct subgraphs C ∼= C0

of MG
i [s], C0 <lex C.

If A ∼= MG
i , then we need to build a G-computable isomorphism between these graphs.

To achieve this, we meet the following requirement for each i ∈ ω.

Si : if A ∼= MG
i , then there exists a G-computable isomorphism fG

i : A → MG
i .

We will show in the verification that if A ∼= MG
i , “true” copies of components from A

will eventually appear and remain in MG
i (and thus become the oldest and lex-least finite

subgraph which is isomorphic to a component in A), and so our Si-strategy below will be

able to define the correct G-computable isomorphism between the two graphs.

Let α be an Si-strategy. When α is first eligible to act, it sets its parameter nα = 0 and

defines fG
α to be the empty map. Once α has defined nα, then when α acted at the previous

α-stage s0, we have the following situation:

• For each m < nα, fG
α [s0] maps the 2mth and (2m + 1)st components of A[s0] to
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isomorphic copies in MG
i [s0].

• For m < nα, let lm be the maximum ΦG
i [s0]-use for the loops in the copies in MG

i [s0]

for the 2mth and (2m+ 1)st components in A. We can assume that if m0 < m1 < nα,

then lm0 < lm1 .

• For m < nα, let uα,m be the fG
α [s0]-use for the mapping of the 2mth and (2m + 1)st

components of A. This use will be constant for all elements in these components.

• By construction, we will have that lm < uα,k for all m ≤ k < nα.

Suppose α is acting at stage s and that nα > 0 and let s0 be the previous α-stage in the

construction. We now break into cases.

If α took an outcome wn at s0, then no strategy could have changed G below the use

uα,nα−1, and so the value of nα remains unchanged.

If instead we have that α took the ∞ outcome at s0, then G may have changed underneath

uα,nα−1. We will show in the verification that the only strategies that can change G below

this use are P or R-strategies β such that β ⊇ α⌢⟨∞⟩. If G[s] ↾ (uα,nα−1 + 1) ̸= G[s0] ↾

(uα,nα−1 + 1), then some β ⊇ α⌢⟨∞⟩ caused a change at stage s0 after α acted. Furthermore,

at most one such β can cause this change at stage s0, as every other strategy extending

β⌢⟨s⟩ will define new and large witnesses for the remainder of stage s0.

If β is a P -strategy which changed G under uα,nα−1, then it added diagonalizing loops to

the 2nβth and (2nβ + 1)st components in A. Assuming that nβ < nα, then α has already

defined fG
α [s0] on these components. Hence, β enumerates the use uα,nβ

into G to destroy

this computation. To account for this change, α redefines nα to be the least m such that fG
α

is not currently defined on the 2mth and (2m+ 1)st components of G.

If instead we have that the β is an R-strategy, then suppose β redefines G by setting

G[s0] = τ⌢0ω. This definition may have changed G on numbers as small as nα and hence

may have injured previously defined fG
α computations. So, at stage s, α resets nα to be the

least m such that fG
α is not currently defined on the 2mth and (2m+ 1)st components of G.
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We now carry out the main action of the Si-strategy: we check whether we can extend

fG
α [s− 1] to the 2nαth and (2nα + 1)st components of A[s]. Search for isomorphic copies in

MG
i [s] of these components. If there are multiple copies in MG

i [s], choose the oldest such

copy to map to, and if there are multiple equally old copies, choose the lexicographically

least oldest copy. If there are no copies in MG
i [s], then keep the value of nα the same,

fG
α unchanged, and let the next requirement act. Otherwise, extend fG

α [s − 1] to fG
α [s] to

include the 2nαth and (2nα + 1)st components of A with a large use uα,nα . Since uα,nα was

chosen large, we have that uα,nα > lk for all k ≤ nα. Increment nα by 1 and go to the next

requirement. If α had to redefine nα because it was challenged by an S-strategy β of higher

priority, then α continues to take finitary outcomes until the value of nα exceeds nβ.

If A ∼= MG
i , then for each n, eventually the real copies of the 2nth and (2n + 1)st

components of A will appear in MG
i . Moreover, they will eventually be the oldest and

lexicographically least copies in MG
i . After G has settled down on the the maximum true

G-use on the edges in the loops in these MG
i components, we will define fG

α correctly on

these components with a large use uα,n. Therefore, eventually our map fG
α is never injured

again on the 2nth and (2n+ 1)st components. It follows that if A ∼= MG
i , then fG

α will be an

embedding of A into MG
i which can be extended to a G-computable isomorphism defined on

all of A.

2.2.4 An interaction caused by genericity

The following interaction arises because we are building a 1-generic. The fact that initial

segments of G can change several times throughout the construction requires our isolated

strategies to be more flexible than what was done previously, and we outline the needed

changes to affected strategies below.

Let α be an Si-strategy, β be an Rj-strategy, and γ be a Pe-strategy where α⌢⟨∞⟩ ⊆

β⌢⟨w1⟩ ⊆ γ, where β⌢⟨w1⟩ indicates that β defined its parameter nβ and took the waiting

outcome at the last β-stage. Suppose that nβ, at a stage s0, and nγ have been defined and

52



2.2 INFORMAL STRATEGIES FOR THEOREM 2.1.7

that nβ < nγ. Suppose that at stage s1, α is able to define fG
α [s1] with a use uα,nγ on the

2nγth and (2nγ + 1)st components of A, with the configuration of the loops in A[s1] and

MG
i [s1] being:

a2nγ : 2, 5nγ + 1 c : 2, 5nγ + 1

a2nγ+1 : 2, 5nγ + 2 d : 2, 5nγ + 2.

Note that fG
α [s1] on these two A-components is being protected by the initial segment

G[s1] ↾ (uα,nγ + 1). Then, at the end of stage s1, α takes the ∞ outcome, and β is eligible

to act. Suppose that β continues to take the w1 outcome, and so γ is eligible to act at

a stage s2 > s1. Suppose that γ sees that the map Φe[s2] maps its chosen A-components

isomorphically to their copies in B[s2], and thus begins to diagonalize by adding new loops to

the following A-components and B-components:

a2nγ : 2, 5nγ + 1, 5nγ + 2, 5nγ + 3 b2nγ : 2, 5nγ + 1, 5nγ + 2, 5nγ + 4

a2nγ+1 : 2, 5nγ + 1, 5nγ + 2, 5nγ + 4 b2nγ+1 : 2, 5nγ + 1, 5nγ + 2, 5nγ + 3.

When γ adds these loops, it enumerates uα,nγ into G[s2], and so G[s2] ↾ (uα,nγ + 1) ̸= G[s1] ↾

(uα,nγ + 1) and fG
α [s1] disappears on the the 2nγth and (2nγ + 1)st components of A. Let

s3 ≥ s2 be a stage such that newly added loops first appeared in MG
i [s3] in the following

positions:

a2nγ : 2, 5nγ + 1, 5nγ + 2, 5nγ + 3 c : 2, 5nγ + 1, 5nγ + 2, 5nγ + 4

a2nγ+1 : 2, 5nγ + 1, 5nγ + 2, 5nγ + 4 d : 2, 5nγ + 1, 5nγ + 2, 5nγ + 3.

α is now able to recover its map fG
α on these A-components with a new large use u′

α,nγ
by

mapping a2nγ to d, a2nγ+1 to c, and all nodes in each component to their respective copies

in MG
i [s3]. Note that this new map fG

α [s3] on these A-components is being protected by

G[s3] ↾ (u′
α,nγ

+ 1). At the end of stage s3, α takes the ∞ outcome and suppose β is now

eligible to act again. Now, suppose that β has found an extension τnβ
of G[s0] ↾ nβ which
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is in Wj[s4] where s4 > s3. β then extends G[s0] ↾ nβ to τnβ
and defines G[s4] = τ⌢

nβ
0ω.

Furthermore, suppose that G[s4] ↾ (uα,nγ + 1) = G[s1] ↾ (uα,nγ + 1), and so the original

map fG
α [s1] is restored on the 2nγth and (2nγ + 1)st components of A. β taking the success

outcome initializes γ since γ ⊇ β⌢⟨w1⟩, however because A and B need to be computable

directed graphs, the loops added at stage s2 must remain in both graphs. In particular, if

the true outcome for MG
i is to have the following connected components

c : 2, 5nγ + 1, 5nγ + 2, 5nγ + 4

d : 2, 5nγ + 1, 5nγ + 2, 5nγ + 3,

then because fG
α [s1] was restored on the two A-components, it is now incorrect on the

G-computable embedding from A into MG
i since fG

α [s1](a2nγ ) = c and fG
α [s1](a2nγ+1) = d, in

particular:

a2nγ : 2, 5nγ + 1, 5nγ + 2, 5nγ + 3 c : 2, 5nγ + 1, 5nγ + 2, 5nγ + 4

a2nγ+1 : 2, 5nγ + 1, 5nγ + 2, 5nγ + 4 d : 2, 5nγ + 1, 5nγ + 2, 5nγ + 3.

We have then that if α⌢⟨∞⟩ is on the true path, it will define an incorrect a G-computable

embedding from A into MG
i . To resolve this issue, after β finds its extension, we will add an

additional step to the Rj-strategy where we homogenize any affected A-components defined

so far, namely the 2nγth and (2nγ + 1)st components of A in this example, in the following

way:

a2nγ : 2, 5nγ + 1, 5nγ + 2, 5nγ + 3, 5nγ + 4

a2nγ+1 : 2, 5nγ + 1, 5nγ + 2, 5nγ + 3, 5nγ + 4.

Then, if the newly added loops reappear in the corresponding copies of each component

in MG
i and remain, it does not matter which positions they appear in since fG

α [s1] will be

correct no matter what. If other cycles or the loops never appear again after β’s success,

then we have that A ≁= MG
i and so α trivially wins. Furthermore, the path now goes to
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the left of γ, and so γ is initialized, and so we do not hurt our construction by undoing γ’s

diagonalization by homogenizing.

Additionally, since we need that A ∼= B, we must also homogenize the corresponding

components in B as well:

b2nγ : 2, 5nγ + 1, 5nγ + 2, 5nγ + 3, 5nγ + 4

b2nγ+1 : 2, 5nγ + 1, 5nγ + 2, 5nγ + 3, 5nγ + 4.

Lastly, we will also homogenize the A-components which received diagonalizing loops

from P -strategies which are to the right of the current true path.

2.3 Proof of Theorem 2.1.7

2.3.1 Requirements

We have three requirements for our construction:

Rj : (∃σ ⊆ G)(σ ∈ Wj ∨ (∀τ ⊇ σ)(τ ̸∈ Wj));

Pe : Φe : A → B is not an isomorphism;

Si : if A ∼= MG
i , then there exists a G-computable isomorphism fG

i : A → MG
i .

2.3.2 Construction

Let Λ = {∞ <Λ · · · <Λ s <Λ w2 <Λ w1 <Λ w0} be the set of outcomes, and let T = Λ<ω be

our tree of strategies. The construction will be performed in ω many stages s.

We define the current true path ps, the longest strategy eligible to act at stage s,

inductively. For every s, λ, the empty string, is eligible to act at stage s. Suppose the strategy

α is eligible to act at stage s. If |α| < s, then follow the action of α to choose a successor

α⌢⟨o⟩ on the current true path. If |α| = s, then set ps = α. For all strategies β such that
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ps <L β, initialize β (i.e., set all parameters associated to β to be undefined). Also, if ps <L β

and β is a P -strategy such that the 2nβth and (2nβ + 1)st components of A and B have

been diagonalized (i.e., the (5n+ 3)- and (5n+ 4)-loops have been added), then homogenize

these components in A and B. If β <L ps and |β| < s, then β retains the same values for its

parameters.

We will now give formal descriptions of each strategy and their outcomes in the construc-

tion.

2.3.3 Rj-strategies and outcomes

We first cover the Rj-strategies used to build our 1-generic set G. Let α be an Rj-strategy

eligible to act at stage s.

Case 1: If α is acting for the first time at stage s or has been initialized since the last

α-stage, it defines mα = max{nβ : nβ defined for β ⊂ α} only when nβ has been defined for

all β ⊂ α. Once mα has been defined, α waits to see if fG
γ converges on the 2mαth and

(2mα + 1)st components of A for all S-strategies γ⌢⟨∞⟩ ⊆ α. Until fG
γ converges on all of

those components, it remains in Case 1 by taking the w0 outcome and does not define its

parameter nα.

Case 2: If α took the w0 outcome at the previous α-stage and all maps fG
γ have converged

on the 2mαth and (2mα + 1)st components of A for S-strategies γ⌢⟨∞⟩ ⊆ α, it defines its

parameter nα to be large. In particular, nα is greater than all of the uses of fG
γ on the 2nβth

and (2nβ + 1)st components for all P - and R-strategies β ⊂ α (since α won’t define nα until

all the nβ’s are defined). Then, take outcome w1.

Case 3: If α took the w1 outcome at the end of the previous α-stage, check if there is an

extension τ of G[s− 1] ↾ nα such that τ ∈ Wj[s]. If not, take the w1 outcome. If such a τ is

found, define G[s] = τ⌢0ω and take outcome w2.

Case 4: If α took the w2 outcome the last time it was eligible to act and has not been

initialized, take outcome s.

56



2.3 PROOF OF THEOREM 2.1.7

Case 5: If α took the s outcome the last time it was eligible to act and has not been

initialized, continue taking outcome s.

2.3.4 Pe-strategies and outcomes

Let α be a Pe-strategy eligible to act at stage s.

Case 1: If α is first eligible to act at stage s or has been initialized, it defines mα =

max{nβ : nβ defined for β ⊂ α} only when nβ has been defined for all β ⊂ α. Once mα has

been defined, α waits to see if fG
γ converges on the 2mαth and (2mα + 1)st components of A

for all S-strategies γ⌢⟨∞⟩ ⊆ α. Until fG
γ converges on all of those components, α remains in

Case 1 by taking the w0 outcome and does not define define its parameter nα.

Case 2: If α took the w0 outcome at the previous α-stage and all maps fG
γ have converged

on the 2mαth and (2mα + 1)st components of A for S-strategies γ⌢⟨∞⟩ ⊆ α, it defines the

parameter nα = n to be large and takes outcome w1.

Case 3: If α took the w1 outcome at the last α-stage, check whether Φe[s] maps the 2nth

and (2n+ 1)st components of A isomorphically into B. If not, take outcome w1.

If so, add a (5n+ 2)- and (5n+ 3)-loop to a2n and a (5n+ 1)- and (5n+ 4)-loop to a2n+1

in A[s]. Add a (5n+ 2)- and (5n+ 4)-loop to b2n and a (5n+ 1)- and (5n+ 3)-loop to b2n

in B[s]. If a map fG
β had already been defined on these components with a use uβ,n by an

S-strategy β where β⌢⟨∞⟩ ⊆ α, enumerate uβ,n into G, and issue a challenge to each such

S-strategy. Take outcome w2.

Case 4: If α took the w2 outcome at the last α-stage and has not been initialized, take

outcome s.

Case 5: If α took the s outcome at the previous α-stage and has not been initialized,

take outcome s again.

2.3.5 Si-strategies and outcomes

Let α be an Si-strategy eligible to act at stage s.
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Case 1: If α is acting for the first time or has been initialized since the last α-stage, set

nα = 0, define fG
α [s] to be the empty function, and take the w0 outcome.

Case 2: If we are not in Case 1, let t be the last α-stage and we break into the following

subcases.

Subcase 1: α is not currently challenged by a P -strategy and one of the following

conditions holds:

• α took the wnα outcome at stage t,

• α took the ∞ outcome at stage t but no P or R-strategy β ⊇ α⌢⟨∞⟩ took the w1

outcome at t, or

• α took the ∞ outcome at t and an R-strategy β ⊇ α⌢⟨∞⟩ took the w1 outcome at t

but G[s− 1] ↾ (uα,nα−1 + 1) = G[t] ↾ (uα,nα−1 + 1).

In this case, α passes to the module for checking for extensions of fG
α below.

Subcase 2: α is currently challenged by a P -strategy β ⊇ α⌢⟨∞⟩. In the verification,

we will show that β is unique.

If α was challenged by β at stage t (i.e., s is the first α-stage since α was challenged),

then set nα to be the least m such that fG
α [s− 1] is not defined on the 2mth and (2m+ 1)st

components of A. In the verification, we will show that nα ≤ nβ. Go to the module for

checking for extensions of fG
α . If fG

α is extended to the 2nαth and (2nα +1)st components, then

increment nα. If nα > nβ, take the ∞ outcome and remove the challenge on α. Otherwise,

take the wnα outcome and the challenge on α remains.

If α was challenged before stage t, then α acts in the same way except it skips the initial

redefining of nα.

Subcase 3: α is not currently challenged by a P -strategy, but α took the ∞ outcome at

stage t, an R-strategy β ⊇ α⌢⟨∞⟩ took outcome w1 at stage t, and G[s− 1] ↾ (uα,nα−1 + 1) ̸=

G[t] ↾ (uα,nα−1 + 1). Reset nα to be the least m such that fG
α [s − 1] is not defined on the

2mth and (2m+ 1)st components of A. Go to the module for checking for extensions of fG
α .
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Module for checking for extensions of fG
α : α searches for the oldest and lex-least

copies of the 2nαth and (2nα + 1)st components in MG
i [s]. If no copies are found, leave fG

α

and nα unchanged and take outcome wnα . If α is challenged, then it remains challenged.

Otherwise, if such copies are found, extend fG
α by mapping the 2nαth and (2nα + 1)st

components in A onto their copies in MG
i [s]. Define uα,nα large and set it as the use of the

newly defined computations of fG
α . Increment nα by 1 and take the ∞ outcome (unless α is

challenged and we still have that nα ≤ nβ, in which case, take the wnα outcome).

2.3.6 Verification

We begin with proving several auxiliary lemmas based on key observations of the construction.

Afterwards, we will prove the main verification lemma.

Lemma 2.3.1. If f : A → A is an embedding of A into itself, then f is an isomorphism.

Proof. The proof is largely the same as before.

Lemma 2.3.2. If A ∼= MG
i for a G-computable directed graph MG

i and fG : A → MG
i is

an embedding defined on all of A, then fG is an isomorphism.

Proof. This follows immediately from Lemma 2.3.1.

Lemma 2.3.3. An S-strategy α will be challenged by at most one P -strategy at any given

stage.

Proof. Let α be an S-strategy and let β be a P -strategy such that β ⊇ α⌢⟨∞⟩. If β challenges

α at some stage s, then it takes the w2 outcome for the first time. The P -strategies extending

β⌢⟨w2⟩ will then wait as in Case 1, and so will not challenge α. Until α can meet its

challenge, it will continue to take the wnβ
outcome, and so P -strategies extending α⌢⟨wnβ

⟩

will not be able to challenge α since wnβ
̸= ∞.

The next two lemmas will prove facts about our 1-generic G that will be useful for our

S-strategies.
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Lemma 2.3.4. G is ∆0
2.

Proof. Let m be arbitrary and we will show that G can only change finitely often below m.

The only strategies which can change G are the R- and P -strategies. If α is a P -strategy, then

α changes G below m if and only if its parameter nα ≤ m. If α is instead an R-strategy, then

α changes G below m if and only if there is an S-strategy β⌢⟨∞⟩ ⊆ α such that uβ,nα ≤ m.

In either case, α will only act once to change G according to its strategy unless it is initialized

and chooses new large parameters. Since parameters are always chosen large (and so are

never reused), only finitely many strategies can change G below m.

Lemma 2.3.5. If A ∼= MG
i , then for each n, there is an s such that for all t ≥ s, the true

copies of the 2nth and (2n+1)st components of A in MG
i are the oldest and lexicographically

least isomorphic copies in MG
i [t] of these components.

Proof. By Lemma 2.3.4, we have that G is ∆0
2. If A ∼= MG

i , then for each n, we have true

copies of the 2nth and (2n+1)st components of A in MG
i . Suppose that the associated G-uses

for the true copies of the 2nth and (2n+ 1)st components are un and un+1, respectively. Since

G is ∆0
2, there exists a sufficiently large stage sn such that G[sn] ↾ un = G ↾ un, and so after

stage sn, the copy of the 2nth component in A will become the oldest and lexicographically

least isomorphic copy of the component in MG
i . The same holds true for the (2n + 1)st

component of A.

Lemmas for each strategy

For each strategy in our construction, we prove several key lemmas. We begin with the P -

and R-strategies.

Lemma 2.3.6. Let α be a P - or R-strategy. If β is another P - or R-strategy such that

β⌢⟨w0⟩ ⊆ α, then α takes the w0 outcome at every α-stage.

Proof. If β⌢⟨w0⟩ ⊆ α and s is an α-stage, then nβ is not defined at stage s. Therefore, α

doesn’t define nα at stage s, and so it takes the w0 outcome.
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Once an R-strategy α defines its parameter, it will stay defined for the rest of the

construction unless α is initialized. We show that if α is on the true path, then it will define

an initial segment of G that either meets or avoids its given c.e. set. We first begin with a

short lemma.

Lemma 2.3.7. Let α be an R- or P -strategy that acts in Case 3 at stage s. Then

G[s] ↾ nα = G[s− 1] ↾ nα.

Proof. If α is an R-strategy, this follows immediately because G[s − 1] ↾ nα ⊆ τ . If α is

a P -strategy, then α may enumerate a use uβ,nα into G where β is an S-strategy where

β⌢⟨∞⟩ ⊆ α. In this case, since uβ,nα was chosen large, we have that uβ,nα > nα and so the

only change to G occurs above nα.

Lemma 2.3.8. Let α be an Rj-strategy that defines nα at a stage s0.

(1) Unless α is initialized, at all stages s > s0, we have that G[s] ↾ nα = G[s0] ↾ nα.

(2) Suppose that α acts as in Case 3 at a stage s1 > s0 with the string τ where τ ∈ Wj [s1].

Unless α is initialized, for all stages s > s1, we have that G[s] ↾ |τ | = τ .

Proof. Let α and nα be as above. For (1), by Lemma 2.3.7 all R- or P -strategies β where

β ⊃ α cannot change G[s] below nα, and hence cannot change G below nα. Therefore, if

there is a change to G[s] below nα, it was caused by some R- or P -strategy δ acting in Case

3 with δ⌢⟨w1⟩ ⊆ α. But when δ acts, it takes the w2 outcome, which initializes α.

For (2), we have that α takes the w2 outcome at stage s1 and the s outcome after stage

s1. All β ⊇ α⌢⟨w2⟩ or β ⊇ α⌢⟨s⟩ will define large parameters nβ > |τ |. So if there are any

changes to G below |τ |, it is caused by some R- or P -strategy δ⌢⟨w1⟩ ⊆ α. However, if δ

changes G, then it takes the w2 outcome, but this initializes α.

We can also prove something similar for the S-strategies.
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Lemma 2.3.9. Let α be an S-strategy and let s0 < s1 be α-stages such that nα[s] has

already been defined and α is not initialized between s0 and s1. Then

G[s0] ↾ nα[s0] = G[s1] ↾ nα[s0]

unless some R- or P -strategy β ⊇ α⌢⟨∞⟩ with nβ < nα[s0] acts between stages s0 and s1.

Proof. By Lemma 2.3.8, G can change below nα[s0] only if an R- or P -strategy β with

nβ < nα[s0] acts. Therefore, we cannot have that α⌢⟨∞⟩ <L β. We also cannot have that

β <L α or β ⊆ α since α would get initialized. Hence, it must be that α⌢⟨∞⟩ ⊆ β.

We now prove that if a Pe-strategy α takes action to add diagonalizing loops to a pair of

A-components, then the diagonalization against Φe on these components will remain at the

end of the construction.

Lemma 2.3.10. Let α be a P -strategy. Suppose that α adds diagonalizing loops to the

2nαth and (2nα +1)st components of A at a stage s0. Unless α is initialized, these components

are not homogenized at a future stage.

Proof. Let α be as in the statement of the lemma. We only homogenized these components

if the path moves to the left of α, in which case α is initialized.

We now prove several key facts for the S-strategies that will help with the main verification

lemma later on.

Lemma 2.3.11. Let α be an S-strategy and β be a P -strategy such that α⌢⟨∞⟩ ⊆ β.

Suppose that there are stages t0 < t1 < t2 < t3 such that β defines mβ at t0, β defines nβ at

t1, β acts in Case 3 at t2, t3 is the first α-stage after t2, and β is not initialized between t0

and t3. Then,

(1) nα[t1] < nβ[t1], and for all S-strategies γ such that γ⌢⟨∞⟩ ⊆ β, fG
γ is defined on the

2mβth and (2mβ + 1)st components of A with nβ[t1] > uγ,mβ
[t1];

(2) for t1 ≤ t < t2, nα[t] > mβ[t] = mβ[t0]; and
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(3) nα[t3] > mβ[t3] = mβ[t0].

Proof. Note that the values of mβ and nβ do not change once they are defined since β is not

initialized. For (1), β defines nβ large at stage t1, and so nβ[t1] > nα[t1]. In addition, β does

not define nβ until all S-strategies γ⌢⟨∞⟩ ⊆ β have nγ > mβ. Therefore, when nβ is chosen

large at stage t1, we have that nβ[t1] > uγ,mβ
[t1].

For (2), when β defines nβ at stage t1, fG
α is defined on the 2mβth and (2mβ + 1)st

components of A. Therefore, we have that nα[t1] > mβ[t0]. At stage t1, β takes the w1

outcome for the first time, and so all strategies γ where β⌢⟨w1⟩ ⊆ γ choose parameters larger

than nα[t1]. In particular, none of these strategies can lower the value of nα below mβ. The

only other strategies which can lower nα without initializing α are γ where α⌢⟨∞⟩ ⊆ γ ⊂ β.

However, these γ would initialize β. Hence, we have that for all t1 ≤ t < t2 that nα[t] > mβ.

In addition, at stage t2, β acts after α, so nα does not get redefined to reflect β’s action until

the α-stage t3. It follows that nα[t] > mβ for t2 ≤ t < t3.

For (3), at stage t3, α sets nα[t3] to be the least m such that fG
α [t3] is not defined on the

2mth and (2m + 1)st components of A. At stage t2, β enumerated uγ,nβ
for S-strategies

γ⌢⟨∞⟩ ⊆ β. However, uγ,nβ
> nβ because uγ,nβ

was defined large when it was chosen and

nβ > uα,mβ
by (1). Therefore, the computation fG

α on the 2mβth and (2mβ +1)st components

is not destroyed by β’s action at stage t2. It follows that nα[t3] > mβ[t3] = mβ[t0].

Lemma 2.3.12. Let α be an S-strategy and β be an R-strategy such that α⌢⟨∞⟩ ⊆ β.

Suppose that there are stages t0 < t1 < t2 < t3 such that β defines mβ at t0, β defines nβ at

t1, β acts in Case 3 at t2, t3 is the next α-stage after t2, and β is not initialized between t0

and t3. Then,

(1) mβ < nα[t1] < nβ[t1] and nβ[t1] > uα,mβ
[t1], which is the use of fG

α [t1] on the 2mβth

and (2mβ + 1)st components of A;

(2) for all t1 ≤ t < t3, nα[t] > mβ; and

(3) nα[t3] > mβ.
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Proof. (1) and (2) hold as in Lemma 2.3.11. For (3), when β acts at stage t2, it defines

G[t2] = τ⌢0ω where G[t2 − 1] ↾ nβ ⊆ τ . Therefore, if uα,mβ
[t1] is the use of the map fG

α [t1]

on the 2mβth and (2mβ + 1)st components, then

G[t2] ↾ uα,mβ
= G[t2 − 1] ↾ uα,mβ

.

Moreover, no requirements can change G below nβ between stages t2 and t3 without initializing

β. Hence,

G[t3 − 1] ↾ uα,mβ
= G[t2 − 1] ↾ uα,mβ

.

In particular, when α acts in Case 2 at stage t3, either α acts in Subcase 1 and doesn’t

change nα, or it acts in Subcase 3 and we retain nα[s3] > mβ because G has not changed

below uα,mβ
.

We can now combine Lemmas 2.3.11 and 2.3.12 into the following single lemma.

Lemma 2.3.13. Let α be an S-strategy. An R- or P -strategy β ⊇ α⌢⟨∞⟩ cannot cause nα

to drop below mβ.

With the help of Lemma 2.3.13, we now prove the following important fact about the

S-strategies.

Lemma 2.3.14. Let α be an S-strategy that is never initialized after stage s and takes the

∞ outcome infinitely often. For all m, there exists a stage tm such that nα[t] ≥ m for all

t ≥ tm.

Proof. Fix m. Let β0, . . . , βk be the R- and P -strategies such that α⌢⟨∞⟩ ⊆ βi and mβi
is

defined at some stage where mβi
< m. Let t > s be a stage such that no βi acts as in Case

3 to change G with mβi
< m after stage t. After stage t, no requirement can cause nα to

drop below m. Moreover, no other R- or P -requirement δ will act until nα > mδ > m. Let

tm > t be the least stage such that nα[tm] > m.
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Lemmas on interactions between multiple strategies

In this section, we prove several lemmas that detail how tension between multiple strategies

are resolved in our construction. We first show that for a lower priority R-strategy, it won’t

be able to injure higher priority S-strategies at arbitrarily small numbers.

Lemma 2.3.15. Let α be an Rj-strategy that acts in Case 3 at stage s. For all P - and

R-strategies β ⊂ α and all S-strategies γ such that γ⌢⟨∞⟩ ⊆ α, if fG
γ is defined on the 2nβth

and (2nβ + 1)st components of A, then

G[s] ↾ uγ,nβ
= G[s− 1] ↾ uγ,nβ

.

Therefore, these maps remain defined.

Proof. When α first acts, it waits for nβ to be defined for all β ⊂ α and then defines

mα = max{nβ : β ⊂ α} and does not define nα until it sees that for all S-strategies

γ⌢⟨∞⟩ ⊆ α, the map fG
γ has been defined on the 2mαth and (2mα + 1)st components of A.

When α is finally able to define nα, it picks nα large and so nα > uγ,nβ
for all S-strategies

γ⌢⟨∞⟩ ⊆ α and for all P - and R-strategies β ⊂ α. If α finds a τ such that τ ∈ Wj[s] and

G[s− 1] ↾ nα ⊆ τ at a stage s, it sets G[s] = τ⌢0ω. This will not change G below uγ,nβ
for

all γ and β as above since nα > uγ,nβ
.

The following lemma details how the S-strategies are able to undo any of their previously

defined maps on A-components in the event that a pair of components were used to diagonalize

against a computable Φe by some Pe-strategy.

Lemma 2.3.16. Let α be an Si-strategy. If fG
α [s] is defined on the 2mth and (2m + 1)st

components of A at stage s, then lm[s] < uα,m[s] where lm[s] is the max use of the edges

in the image of these components in MG
i and uα,m[s] is the use of this computation. In

particular, any change in these loops in MG
i causes the computation to be destroyed.

Proof. Whenever an fG
α [s] computation is defined, its use is defined large. Therefore, we have

that lm[s] < uα,m[s] when the computation is first defined. The computation may be destroyed
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later by a change in G below uα,m[s]. However, if it is later restored by uα,m[t] = uα,m[s] for

t > s, then lm[t] = lm[s] and so the loops in MG
i are restored as well.

We now show that enumerating these uses has the intended effect of deleting a map fG
α

defined previously by some S-strategy α on some A-components.

Lemma 2.3.17. Let α be a P -strategy and β be an S-strategy such that β⌢⟨∞⟩ ⊆ α.

Suppose s0 < s1 < s2 are stages such that α defines nα at s0, β defined fG
β on the 2nαth and

(2nα + 1)st components in A at s1, α acts in Case 3 at s2 and puts uβ,nα into G[s2], and α

is not initialized between s0 and s2. Then,

(1) nα[s0] > nβ[s0],

(2) for all s1 ≤ t < s2, we have that the values of nα[t] = nα[s0] and uβ,nα [t] = uβ,nα [s1], so

we denote them by nα and uβ,nα ,

(3) for all t < s2, uβ,nα ̸∈ G[t] and therefore G[s2] ↾ (uβ,nα + 1) ̸= G[t] ↾ (uβ,nα + 1) for all

t < s2,

(4) unless α is initialized, uβ,nα ∈ G[s] for all s ≥ s2, and

(5) if there is an s ≥ s2 such that uβ,nα ̸∈ G[s], then the 2nαth and (2nα + 1)st components

of A and B are homogenized.

Proof. (1) follows from the fact that nα is defined large at stage s0. For (2), nα changes

values only when α is initialized, and the only strategies that can change G below uβ,nα

would initialize α. For (3), when β defines uβ,nα at stage s1, the use was chosen large so

uβ,nα ̸∈ G[t] for t ≤ s1. For s1 < t < s2, the only strategies that could change G below uβ,nα

would initialize α by Lemma 2.3.15. Lastly for (4), only an R-strategy γ could remove uβ,nα

and only if nγ < uβ,nα . But such an R-strategy with nγ < uβ,nα would initialize α when it

acts by Lemma 2.3.15. Furthermore, the path ps <L α causes the 2nαth and (2nα + 1)st

components of A and B to be homogenized, proving (5).
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Lemma 2.3.18. Let α be a P -strategy and β be an S-strategy such that β⌢⟨∞⟩ ⊆ α.

Suppose α acts at stage t in Case 3 and puts uβ,nα into G and challenges β. Unless β is

initialized, at the next β-stage s, β defines nβ[s] ≤ nα[s] = nα[t].

Proof. By Lemma 2.3.17 and the fact that β is not initialized, we get that uβ,nα ∈ G[s− 1].

Therefore, fG
β [s− 1] is no longer defined on the 2nαth and (2nα + 1)st components of A and

hence nβ is redefined to a value which is at most nα.

Lemma 2.3.19 (Main Verification Lemma). Let TP = lim infs ps be the true path of the

construction, where ps denotes the current true path at stage s of the construction. Let

α ⊂ TP .

(1) If α is an Rj-strategy, then the parameters mα and nα are eventually permanently

defined and there is an outcome o and an α-stage tα such that for all α-stages s ≥ tα,

α takes outcome o where o ranges over {s, w1}.

(2) Let α be a Pe-strategy, then the parameters mα and nα are eventually permanently

defined and there is an outcome o and an α-stage tα such that for all α-stages s ≥ tα,

α takes outcome o where o ranges over {s, w1}.

(3) If α is an Si-strategy, then either α takes outcome ∞ infinitely often or there is an

outcome wn and a stage tα such that for all α-stages s > tα, α takes outcome wn.

If A ∼= MG
i , then α takes the ∞ outcome infinitely often and defines an embedding

fG
α : A → MG

i which can be extended in a G-computable way to a G-computable

isomorphism f̂G
α between A and MG

i .

In addition, α satisfies its assigned requirement.

Proof. For (1), let α ⊂ TP be an Rj-strategy and let s0 be the least stage such that α ≤L ps

for all s ≥ s0 and for all R- and P -strategies β ⊂ α, nβ is defined. At stage s0, α defines mα

permanently since α is never initialized again. By Lemma 2.3.14, there is an s1 > s0 such
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that for all S-strategies β where β⌢⟨∞⟩ ⊆ α, we have nβ[t] > mα for all t ≥ s1. At stage s1

(if not before), α defines nα permanently and takes outcome w1.

If α remains in the first part of Case 3 from its description for all α-stages s ≥ s0,

then Rj is satisfied because for all extensions τ of σ = G[s0] ↾ nα, τ ̸∈ Wj. Moreover, since

α ⊂ TP , we have that G[s0] ↾ nα = G ↾ nα by Lemma 2.3.8. Otherwise, there is a stage

s ≥ s0 such that α finds an extension τ ⊇ G[s0] ↾ nα where τ ∈ Wj[s]. At the end of stage

s, α takes the w2 outcome, and since α ⊂ TP , α will be able to act again and finally take

the s outcome. For the rest of the construction, it will be in Case 5 of its description after

defining τ ⊆ G where τ ∈ Wj. Again by Lemma 2.3.8, we have that G[t] ↾ |τ | = τ for all

t ≥ s, and Rj is satisfied.

We now prove (2). Suppose α ⊂ TP is a Pe-strategy. Let s0 be the least stage such that

α ≤L ps for all s ≥ s0 and for all R- or P -strategies β ⊂ α, nβ is defined. Like before, at stage

s0, α defines mα permanently since α is never initialized. By Lemma 2.3.14, there exists a

stage s1 > s0 such that for all S-strategies β with β⌢⟨∞⟩ ⊆ α, we have that nβ[t] > mα for

all t ≥ s1. Then at stage s1 (if not before), α defines nα permanently and takes outcome w1.

If α remains in the first part of Case 3 from its description for all α-stages s ≥ s0, then

Pe is trivially satisfied since Φe is not total or maps A incorrectly into B, and so it cannot be

an isomorphism between A and B. In this case, α takes outcome w1 cofinitely often.

Otherwise, there is an α-stage s1 > s0 where Φe[s1] maps the 2nth and (2n + 1)st

components of A isomorphically into B. Then, α carries out all actions described in the

second part of Case 3. Let s2 > s1 be the next α-stage, and now α is in Case 4 of its

description and can now take the s outcome. Moreover, since α ⊂ TP , α will never get

initialized again and so the 2nth and (2n+1)st components of A and B are never homogenized.

By Lemma 2.3.10 we have that Φe(a2n) = b2n, but a2n is connected to a cycle of length 5n+ 3

whereas b2n is connected to a cycle of length 5n+ 4. Similarly, Φe(a2n+1) = b2n+1, but a2n+1

is connected to a cycle of length 5n+ 4 whereas b2n+1 is connected to a cycle of length 5n+ 3.

Hence, Φe cannot be an isomorphism between A and B, and so Pe is satisfied.
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For (3), let α ⊂ TP be an Si-strategy and let s0 be the least stage such that for all stages

s ≥ s0, α ≤L ps. Under all of the subcases of Case 3, α enacts the module to search for

extensions of fG
α on the 2nαth and (2nα + 1)st components of A for its currently defined nα

parameter. If an extension cannot be found for these components, then we have that α takes

the wnα outcome at cofinitely many α-stages after s0 and we are done since A ≁= MG
i .

We can then assume that A ∼= MG
i and that α takes the ∞ outcome infinitely often. α can

then eventually find a correct extension on these components by Lemma 2.3.5. Additionally,

we have by Lemma 2.3.14 that nα[s] → ∞ as s → ∞ where nα[s] denotes the value of nα at

the end of stage s. We also have that by Lemmas 2.3.16 and 2.3.18, these embeddings will

remain or be able to recover if they are challenged by lower priority strategies.

Although fG
α is not defined on the homogenizing loops added at the end of each stage, we

can G-computably extend fG
α to a map f̂G

α defined on all of A in the following way. Since

A ∼= MG
i , then these loops added at the end of each stage will eventually have true copies

in the images under fG
α on the affected components, and they will become the oldest and

lex-least such copies by Lemma 2.3.5. We can find copies of these new loops by using G

since MG
i is G-computable, and once we know when these loops appear, we can extend fG

α

appropriately on these new components to obtain f̂G
α . Our new map f̂G

α is still G-computable,

and by Lemma 2.3.2, f̂G
α is our G-computable isomorphism between A and MG

i .

2.4 Other classes of structures

For this section, we restate the main result from the first chapter of this thesis.

Theorem 2.4.1. Let P = (P,≤) be a computable partially ordered set and let P = P0 ⊔ P1

be a computable partition. Then, there exists a computable computably categorical directed

graph G and an embedding h of P into the c.e. degrees where G is computably categorical

relative to each degree in h(P0) and is not computably categorical relative to each degree in

h(P1).
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We now show that the structure which witnesses the above behavior need not be a directed

graph.

Theorem 2.4.2. Let P = (P,≤) be a computable partially ordered set and let P = P0 ⊔ P1

be a computable partition. For the following classes of structures, there exists a computable

example in each class which satisfies the conclusion of Theorem 2.4.1: symmetric, irreflexive

graphs; partial orderings; lattices; rings with zero-divisors; integral domains of arbitrary

characteristic; commutative semigroups; and 2-step nilpotent groups.

We will use the codings given in [19] in order to code the directed graph G (and presenta-

tions of it) in the statement of Theorem 2.4.1 into a structure in one of the above classes of

structures.

2.4.1 Codings

Suppose an abstract graph G and a structure A, from one of the listed classes in the statement

of Theorem 2.4.2, have computable presentations. Let G and A be particular copies of G and

A, respectively. We first state the following definitions before defining the coding from [19].

Definition 2.4.3. A relation U on a structure A is invariant if for every automorphism

f : A ∼= A, we have that f(U) = U .

Here, an n-ary relation U on a structure A is some subset of |A|n where |A| denotes the

underlying domain of A.

Definition 2.4.4. A relation U on the domain of a structure A is intrinsically computable

if for any computable B and computable isomorphism f : A → B, the image f(U) is

computable.

Definition 2.4.5. Let d be a degree. A d-computable defining family for a structure A

is a d-computable set of existential formulas φ0(⃗a, x), φ1(⃗a, x), . . . such that a⃗ is a tuple of

elements of |A|, each x ∈ |A| satisfies some φi, and no two elements of |A| satisfy the same

φi.
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The main idea of the coding methods given in [19] is that there are intrinsically computable,

invariant relations D(x) and R(x, y) on the domain of A such that taking the elements in |A|

satisfying D(x) and adding the relation on them defined by R(x, y) gives a copy of the graph

G. This gives us a map from copies of the structure A to copies of G, which we will write as

A 7→ GA. In addition, there is a uniform computable functional taking copies of G to copies

of A, which we will write as G 7→ AG. Note that these maps can be applied repeatedly. For

example, we can apply a map to go from A to GA and then to AGA
, a copy of the structure

A. Note that AGA
and A are isomorphic as both are copies of the structure A, but they are

not the same presentation.

The coding methods in [19] satisfy the following list of properties:

(P0) For every presentation G of G, the structure AG is deg(G)-computable.

(P1) For every presentation G of G, there is a deg(G)-computable map gG : |AG| → G such

that RAG(x, y) ⇐⇒ EG(gG(x), gG(y)) for all x, y ∈ |AG|.

(P2) If f : |A| → |A| is 1-to-1 and onto and R(x, y) ⇐⇒ R(f(x), f(y)) for all x, y ∈ |A|,

then f can be extended to an automorphism of A.

(P3) For every presentation G of G, there is a deg(G)-computable set of existential formulas

φ0(⃗a, b⃗0, x), φ1(⃗a, b⃗1, x), . . . such that a⃗ is a tuple of elements from the universe of AG,

each b⃗i is a tuple of elements of |AG|, each x in the universe of AG satisfies some φi,

and no two elements of the universe of AG satisfy the same φi.

Each of these properties are key in proving Lemmas 2.6-2.9 in [19], whose relativized

versions below are needed to prove Theorem 2.4.2. Here, we let G be the directed graph that

satisfies the conclusion of Theorem 2.4.1, but the lemmas hold in general for any directed

graph and for all degrees d.

Lemma 2.4.6. For every d-computable presentation G of G, there is a d-computable

isomorphism from GAG
onto G.
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Lemma 2.4.7. For every d-computable presentation A of A, there is a d-computable

isomorphism from AGA
onto A.

Lemma 2.4.8. If G0 and G1 are d-computable presentations of G and h : G0 → G1 is a

d-computable isomorphism, then there is a d-computable isomorphism ĥ : AG0 → AG1 .

Lemma 2.4.9. If A0 and A1 are d-computable presentations of A and h : A0 → A1 is a

d-computable isomorphism, then there is a d-computable isomorphism ĥ : GA0 → GA1 .

We now prove a key lemma with the help of these relativized lemmas.

Lemma 2.4.10. For any degree d, G is computably categorical relative to d if and only if A

is computably categorical relative to d.

Proof. Fix the degree d. Suppose G is computably categorical relative to d. Let A0 and A1 be

d-computable presentations of A. We then obtain d-computable presentations GA0 and GA1

of G. Since G is computably categorical relative to d, there is a d-computable isomorphism

h : GA0 → GA1 . By Lemma 2.4.8, we have a d-computable isomorphism ĥ : AGA0
→ AGA1

.

Additionally, by Lemma 2.4.7, there are d-computable isomorphisms f0 : AGA0
→ A0 and

f1 : AGA1
→ A1. It follows that f1 ◦ ĥ ◦ f−1

0 : A0 → A1 is a d-computable isomorphism as

needed.

For the reverse direction, suppose A is computably categorical relative to d. To show G is

computably categorical relative to d, we run an identical argument as above using Lemmas

2.4.6 and 2.4.9 in place of Lemmas 2.4.7 and 2.4.8, respectively.

Theorem 2.4.2 follows almost immediately, as we will now show.

Proof of Theorem 2.4.2. Let P be our computable poset where P = P0 ⊔ P1 is a computable

partition, let G be the computable directed graph which witnesses Theorem 2.4.1, and let

h be the embedding of P into the c.e. degrees. By Lemma 2.4.10, we have that since G is

computably categorical, so is A. We also have that because G is computably categorical

relative to all d ∈ h(P0) that A is computably categorical relative to all d ∈ h(P0). Finally,
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since G is not computably categorical relative to any d ∈ h(P1), it follows that A is also not

computably categorical relative to any d ∈ h(P1).

2.4.2 Boolean algebras and linear orders

To end this section, we discuss how for computable Boolean algebras, it is impossible to

create an example which witnesses the conclusion of Theorem 2.4.1 (or even the main result

of [9]). Moreover, it is impossible to produce an example of a computable Boolean algebra B

and a c.e. degree d such that B is not computably categorical but is computably categorical

relative to d. We hope to eventually show that the same holds for the class of computable

linear orders.

For computable Boolean algebras, we have the following results.

Theorem 2.4.11 (Gončarov [15]). A computable Boolean algebra is computably categorical

if and only if it has finitely many atoms.

In fact, this fully characterizes relative computable categoricity for computable Boolean

algebras. Additionally, Bazhenov showed the following.

Theorem 2.4.12 (Bazhenov [4]). For every degree d < 0′, a computable Boolean algebra is

d-computably categorical if and only if it is computably categorical.

For a computable Boolean algebra B, if B is computably categorical, then it is also

relatively computably categorical and so must be computably categorical relative to all

d ≥ 0. That is, no computable computably categorical Boolean algebra can witness the

nonmonotonic behavior of computably categoricity relative to a degree in either the main

result of [9] or in Theorem 2.4.1.

Bazhenov’s result is needed for the following variation. The structure need not be

computably categorical as seen in Theorem 2.1.7, where we begin with a graph which is not

computably categorical but changes to being computably categorical relative to a degree

d > 0. However, this behavior also cannot be witnessed by a computable Boolean algebra. Let
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B be a computable Boolean algebra which is not computably categorical, then by Bazhenov’s

theorem, we have that for all degrees d < 0′, B is not d-computably categorical. That

is, for each d < 0′, there exists a computable copy Ad of B such that B and Ad are not

d-computably isomorphic. Such a computable copy is also a d-computable copy of B, and so

B cannot be computably categorical relative to any d < 0′.

It is unclear if the same outcome could be observed for computable linear orders which

are not computably categorical, since Theorem 2.4.12 was a nontrivial result which followed

from Bazhenov’s methods to prove the main result in [4].

Theorem 2.4.13 (Bazhenov [4]). For B a computable Boolean algebra, B is ∆0
2-categorical

if and only if it is relatively ∆0
2-categorical.

If we had a similar result for linear orders, then certainly that would imply that a com-

putable linear order cannot be constructed to be not computably categorical but computably

categorical relative to some c.e. degree d > 0. We end this chapter with a question in this

direction.

Question 2.4.14. Does there exist a degree d < 0′ and a computable linear order L which

is d-computably categorical but is not computably categorical?
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Chapter 3

The reverse mathematics of a

topological theorem

3.1 Introduction

This chapter contains my contributions from joint work [5] with my advisers Reed Solomon

and Damir Dzhafarov, and fellow PhD students Heidi Benham and Andrew DeLapo.

3.1.1 Brief overview of reverse mathematics

Reverse mathematics is a research program in mathematical logic that aims to study which

logical axioms are both sufficient and necessary to prove mathematical theorems. The logical

strength of a mathematical theorem is measured using subsystems of second-order arithmetic.

In particular, the base theory over which we prove reversals is called RCA0.

Definition 3.1.1. The formal system RCA0 consists of the following axioms and axiom

schema:

(1) PA−, i.e., axioms which describe a discrete ordered semiring;

(2) the ∆0
1 comprehension scheme; and
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(3) IΣ0
1 (the induction axiom restricted to Σ0

1 formulas),

where the ∆0
1 comprehension scheme consists of the universal closure of each axiom of the

form

(∀n)[φ(n) ↔ ψ(n)] → (∃X)[n ∈ X ↔ φ(n)],

where φ is Σ0
1 and ψ is Π0

1.

In RCA0, we can formalize many of the coding methods utilized in computable mathematics,

and so we can show some mathematical theorems are provable in RCA0.

Theorem 3.1.2 ([29]). The following mathematical theorems are provable in RCA0:

(1) The Baire category theorem;

(2) the existence of an algebraic closure of a countable field;

(3) and the intermediate value theorem.

However, not every theorem is provable in RCA0, and in order to measure their logical

strength, we consider stronger subsystems such as ACA0, which we obtain by allowing the

comprehension scheme to be used for all arithmetical formulas.

Definition 3.1.3. The formal system ACA0 consists of RCA0 and the comprehension scheme

for all arithmetical formulas.

Over RCA0, we can show that several mathematical theorems are equivalent to ACA0 by

using the following fact.

Theorem 3.1.4 (RCA0). The following are equivalent:

(1) ACA0.

(2) For every 1-to-1 function f : N → N, the range of f exists, i.e., the set

rg(f) = {m : ∃n ∈ N(f(n) = m)}

exists.
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Many well-known mathematical theorems are equivalent, over RCA0, to one of the following

subsystems, listed in order of increasing provability strength: WKL0, ACA0, ATR0, Π1
1-CA0.

However, recent developments in reverse mathematics has shown that combinatorial results

form a rich zoo beneath ACA0, beginning with results which show that the principle RT2
2 is

strictly weaker than ACA0 [27] and does not imply WKL0 [23].

Definition 3.1.5. Let [N]n denote the collection of n-element subsets of N. A k-coloring of

[N]n is a map c : [N]n → k. A set H ⊆ N is homogeneous for c if there is an i < k where

c(s) = i for all s ∈ [H]n.

Definition 3.1.6. RT2
2 is the statement that every 2-coloring c : [N]2 → 2 admits an infinite

homogeneous set H.

For the results mentioned in this chapter, we define two specific combinatorial principles,

both being consequences of RT2
2.

Definition 3.1.7 (Chain/antichain principle). CAC is the statement that every infinite

partial order (P,≤P ) has an infinite chain or antichain.

Definition 3.1.8 (Ascending/descending sequence principle). ADS is the statement that

every infinite linear order has an infinite ascending sequence or an infinite descending sequence.

We have that over RCA0, RT2
2 strictly implies CAC [20] and CAC strictly implies ADS [22].

For a more general background on reverse mathematics, see Simpson [29] or Dzhafarov and

Mummert [10].

3.1.2 Preliminaries from topology

In this section, we recall some definitions from topology that will appear frequently throughout

this chapter. We first begin with the separation axioms.

Definition 3.1.9. Let X be a topological space.
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(1) X is said to be T0 if for any distinct x, y ∈ X, there is an open set U such that x ∈ U

and y ̸∈ U , or x ̸∈ U and y ∈ U .

(2) X is said to be T1 if for any distinct x, y ∈ X, there are open sets U and V such that

x ∈ U and y ̸∈ U , and x ̸∈ V and y ∈ V .

(3) X is said to be T2 if for any distinct x, y ∈ X, there are open sets U and V such that

x ∈ U and y ̸∈ U , x ̸∈ V and y ∈ V , and U ∩ V = ∅.

Note that a T2 space is more commonly referred to as a Hausdorff space. We also note

that if a space is T2, then it is also T1 and T0. There are various examples of topological

spaces that satisfy weaker separation axioms but not the stronger separation axioms. One

such example is the Sierpiński space, whose underlying set is {0, 1} and the open sets are ∅,

{1}, and {0, 1}. This space is T0 but not T1.

In order to study topological spaces in the context of reverse math, we will use a

formalization of countable spaces (see section 3.1.3) where we can specify the open sets in

the topology via a countable basis.

Definition 3.1.10. X is said to be second-countable (or is a second-countable space)

if there is a countable collection U = {Ui}i∈N of open subsets of X that form a basis for the

topology on X.

It is not true in general that every countable space will also be second-countable, but we

will narrow our focus on countable spaces which are second-countable in order to use the

codings available in RCA0.

3.1.3 Brief overview of CSC spaces

Ginsburg and Sands proved the following topological theorem in [14] using a combinatorial

proof with applications of the principles CAC and ADS.
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Theorem 3.1.11 (Ginsburg-Sands). Every infinite topological space contains one of the

following five spaces, with N as the underlying set, as a subspace:

(i) discrete: all subsets of N are open;

(ii) indiscrete: the only open sets are N and ∅;

(iii) cofinite: the open sets are N, ∅, and all subsets of N with finite complement;

(iv) initial segment: the open sets are N, ∅, and all sets of the form [0, n] = {k ∈ N : k ≤ n};

(v) final segment: the open sets are N, ∅, and all sets of the form [n,∞) = {k ∈ N : n ≤ k}.

Moreover, no two of the five spaces above are homeomorphic, and each of the spaces is

homeomorphic to all of its infinite subspaces. Hence, such a space from above is said to be a

minimal space within the original infinite space. In order to study Theorem 3.1.11 in a

reverse math setting, we restricted the theorem to presentations of topological spaces known

as CSC spaces, due to Dorais [7].

Definition 3.1.12. A countable second-countable (CSC) space is a tuple ⟨X,U , k⟩ as

follows:

(1) X is a subset of N;

(2) U = ⟨Un : n ∈ N⟩ is a family of subsets of X such that every x ∈ X belongs to Un for

some n ∈ N;

(3) k : X × N × N → N is a function such that for every x ∈ X and all m,n ∈ N, if

x ∈ Um ∩ Un then x ∈ Uk(x,m,n) ⊆ Un ∩ Um.

Here, U is the basis for ⟨X,U , k⟩ if it is closed under finite intersections. If U is not

closed under finite intersections, then it is only a subbasis, but which can be extended to a

basis. On this extension, we can define our k function to satisfy (3) by Lemma 3.2 in [5].
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We say that ⟨X,U , k⟩ is an infinite CSC space if X is infinite. Although the function k

is part of the presentation of a CSC space, we can essentially build CSC spaces in RCA0 by

specifying a countable basis of basic open sets Un, where these sets can originate from an

arbitrary collection of sets.

Proposition 3.1.13 (Proposition 2.12, [7]). The following is provable in RCA0. Given a set

X ⊆ N and a collection ⟨Vn : n ∈ N⟩ of subsets of X, there exists a CSC space ⟨X,U , k⟩ with

U = {Un : n ∈ N} as follows:

(1) for every n ∈ N, Vn ∈ U ;

(2) for every m ∈ N, Um = ⋂
n∈F

Vn, where F is the finite set coded by m.

We call ⟨X,U , k⟩ above the CSC space generated by ⟨Vn : n ∈ N⟩. Additionally, since

every finite set is coded by a number, sets in U are closed under finite intersections, and so

we can obtain our function k for the CSC space. Using this fact, we can build topological

spaces with certain properties by specifying ⟨Vn : n ∈ N⟩. Throughout this chapter, we will

use “X ∈ U” as shorthand for the formula ∃n(X = Un ∧ Un ∈ U).

We now give some classical definitions from topology in the specific context of CSC spaces.

Definition 3.1.14. Let ⟨X,U , k⟩ be a CSC space with U = {Un : n ∈ N}.

(1) For Y ⊆ X, let U ↾ Y = ⟨Un ∩ Y : n ∈ N⟩.

(2) A subspace of ⟨X,U , k⟩ is a tuple ⟨Y,U ↾ Y, k⟩ for some Y ⊆ X.

Definition 3.1.15. Let ⟨X,U , k⟩ be a CSC space.

(1) X is T0 if for x ̸= y in X, there exists U ∈ U such that either x ∈ U and y ̸∈ U , or

x ̸∈ U and y ∈ U .

(2) X is T1 is for x ̸= y in X, there exists U, V ∈ U such that x ∈ U \ V and y ∈ V \ U .
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In RCA0, it is fairly straightforward to prove that given a CSC space X and Y ⊆ X, the

subspace ⟨Y,U ↾ Y, k⟩ exists. It is also easy to prove in RCA0 that a given T1 CSC space X

must also be T0. We now give definitions for specific topologies on our CSC spaces.

Definition 3.1.16. Let ⟨X,U , k⟩ be a CSC space. X is said to be indiscrete if U ∈ U if

and only if U = ∅ or U = X.

Definition 3.1.17. Let ⟨X,U , k⟩ be a CSC space.

(1) X has the initial segment topology if there is a bijection h : N → X such that U ∈ U

if and only if U is ∅, X, or {h(i) : i ≤ j} for some j ∈ N.

(2) X has the final segment topology if there is a bijection h : N → X such that U ∈ U

if and only if U is ∅, X, or {h(i) : i ≥ j} for some j ∈ N.

We will refer to the bijection h above as a homeomorphism like in classical topology.

Since we are stating the existence of a homeomorphism h, these definitions may seem stronger

than they need to be. There are other ways of defining these topologies in terms of just open

sets without needing to mention a map h.

Definition 3.1.18. Let ⟨X,U , k⟩ be an infinite CSC space.

(1) X has the weak initial segment topology if:

(a) every U ∈ U is finite or equal to X;

(b) if U, V ∈ U then either U ⊆ V or V ⊆ U ;

(c) for each s ∈ N, there is a finite U ∈ U such that |U | = s;

(d) each x ∈ X belongs to some finite U ∈ U .

(2) X has the weak final segment topology if:

(a) every U ∈ U is cofinite in X or is ∅;

(b) if U, V ∈ U then either U ⊆ V or V ⊆ U ;
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(c) for each s ∈ N, there is a nonempty U ∈ U such that |X \ U | = s;

(d) each x ∈ X belongs to some U ̸= X ∈ U .

However, in RCA0, it turns out that we can use the stronger Definition 3.1.17 without

inflating a principle’s strength for the purposes of the results in this chapter. Recall that

for the Ginsburg-Sands theorem, we are interested in finding infinite subspaces with certain

topologies.

Proposition 3.1.19 (Proposition 3.14, [5]). The following is provable in RCA0.

(1) Every infinite CSC space ⟨X,U , k⟩ with the weak initial segment topology has an

infinite subspace with the initial segment topology.

(2) Every infinite CSC space ⟨X,U , k⟩ with the weak final segment topology has an infinite

subspace with the final segment topology.

Hence, we can begin with a CSC space ⟨X,U , k⟩ with the weak initial or final segment

topology, but when we pass to the infinite subspace with the corresponding stronger topology,

we can utilize homeomorphisms in our proofs when needed.

3.2 Without and with the closure relation

3.2.1 The existence of the closure relation and ACA0

Here, we sketch only a part of the classical argument for Ginsburg-Sands. Let X be an

infinite topological space, then we can define the following equivalence relation on X:

x ∼ y ⇐⇒ cl{x} = cl{y}.

If there is an infinite equivalence class, then we are done as we have obtained an infinite

subspace with the indiscrete topology. Otherwise, each equivalence class is finite, and so

there must be infinitely many classes. By choosing one point from each class, we form an
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infinite subspace which is T0. This subspace is T0 because if x ̸= y, then cl{x} ≠ cl{y} and

so cl{x} is a closed set containing x but not y or cl{y} is a closed set containing y but not x.

On this T0 subspace, we define the following partial order:

x ≤ y ⇐⇒ x ∈ cl{y}.

With this ≤-ordering, we obtain an infinite partially-ordered set where we can apply CAC to

obtain either an infinite antichain or an infinite chain. If we have an infinite chain, we can

apply ADS to obtain either an infinite ascending sequence or an infinite descending sequence.

In the former, we obtain an infinite subspace satisfying (v), and in the latter, we obtain an

infinite subspace satisfying (iv). If instead we have an infinite antichain, then this forms an

infinite T1 subspace of X. This case requires a separate argument to prove Theorem 3.1.11

which does not involve CAC or ADS (see [5, Section 2]).

To begin studying the logical strength of Theorem 3.1.11, we begin with the following

classical definition.

Definition 3.2.1. The closure relation clX on a topological space X is the binary relation

defined by

(y, x) ∈ clX ⇐⇒ y ∈ cl{x}.

We now formalize the closure relation on a CSC space in RCA0.

Definition 3.2.2 (RCA0). The closure relation clX on a CSC space X is the binary relation

defined by

(y, x) ∈ clX ⇐⇒ (∀n)(y ∈ Un → x ∈ Un).

Classically, we can define the closure of a point x ∈ X as the set

cl{x} = {y ∈ X : for every basic open set U, (y ∈ U → x ∈ U)}.

Since we are given the basic open sets Un for a CSC space X, Definition 3.2.2 fully captures

the closure of a point in X. We now show the exact logical strength needed to prove that
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clX exists for any given CSC space X.

Theorem 3.2.3 (RCA0). The following are equivalent:

(1) ACA0.

(2) For a CSC space ⟨X,U , k⟩, the closure relation clX exists.

Proof. (1) implies (2) is immediate by Definition 3.2.2. For the converse, we will use Theorem

3.1.4. Let f : N → N be an injective function. For each n = ⟨e, s⟩, we define the following

sets:

Un =


{2e, 2e+ 1} if (∀m ≤ s)(f(m) ̸= e)

{2e} if (∃m ≤ s)(f(m) = e).

We claim that e ∈ rg(f) if and only if 2e ̸∈ clX(2e+ 1). If 2e ̸∈ clX(2e+ 1), then there

exists a basic open set Un such that 2e ∈ Un but 2e+ 1 ̸∈ Un. In particular, if n = ⟨e, s⟩, we

have that U⟨e,s⟩ = {2e}, and so there exists an m ≤ s such that f(m) = e. If 2e ∈ clX(2e+ 1),

we have that for all basic open sets Un where 2e ∈ Un, it must also be the case that 2e+1 ∈ Un.

So, for all s where n = ⟨e, s⟩, we have that Un = {2e, 2e+ 1}. Hence, for all s, we have that

for all m ≤ s that f(m) ̸= e, and thus e ̸∈ rg(f).

By Theorem 3.2.3, we have that a proof of the Ginsburg-Sands theorem which uses the

closure relation must assume at least ACA0. We now turn our attention to the case where

the closure operation is given as part of the representation for a CSC space.

3.2.2 Weak Ginsburg-Sands with the closure relation (wGScl) and

CAC

Consider the following new principle.

wGScl: Let ⟨X,U , k⟩ be an infinite CSC space with a closure relation clX . Then, X has

one of the following:

(i) an infinite T1 subspace;
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(ii) an infinite indiscrete subspace;

(iii) an infinite subspace homeomorphic to N with the initial segment topology;

(iv) an infinite subspace homeomorphic to N with the final segment topology.

wGScl is a “weakening” of the original Ginsburg-Sands theorem in the sense that the

infinite discrete subspace or infinite subspace with the cofinite topology cases are collapsed

into the singular T1 case in (i). The following result shows that we have a topological

characterization of the combinatorial principle CAC.

Theorem 3.2.4 (RCA0). The following are equivalent:

(1) CAC.

(2) wGScl.

Proof. For (1) implies (2), let X be a CSC space with its closure relation clX given. We

follow the same line of argument as in section 3.2 to obtain a T0 subspace of X where we can

define a partial order by saying that

x ≤ y ⇐⇒ x ∈ cl{y}.

Our T0 subspace, call it Y , with this partial ordering is an infinite partially-ordered set,

and so we can use CAC to obtain either an infinite antichain or an infinite chain. If we have

an infinite antichain, this forms an infinite T1 subspace of X since for each x, y ∈ Y , x ̸≤ y

and y ̸≤ x, and so we have open sets in X which separate the two points from each other by

the definition of ≤.

If we have an infinite chain, then we can apply ADS to obtain either an infinite ascending

sequence or an infinite descending sequence. Let y0 < y1 < y2 < . . . be an infinite ascending

sequence in Y . Note that this is strictly increasing because Y is T0. So for each i ∈ N, there

is an open subset of X which contains yi+1 but not yi, but every open set containing yi also

contains yi+1. Let A be a nonempty open subset of Y and we define m = min{i ∈ N : yi ∈ A}.
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We have that A = {yi : i ≥ m} by the argument in the previous sentence, and so each set

of the form {yi : i ≥ n} is open in Y for each n. Hence, Y with the subspace topology is

homeomorphic to N with the final segment topology via the homeomorphism h : Y → N

defined by h(yi) = i. If we started with an infinite descending sequence, a symmetric argument

yields us an infinite subspace homeomorphic to N with the initial segment topology.

We now prove that (2) implies (1) over RCA0. Let P = (ω,≤P ) be an infinite partially-

ordered set. We form a CSC space X = ⟨P,U , k⟩ generated by {Up}p∈P where

Up = {x ∈ P : p ≤P x}

For this order topology, we have that for each x ∈ P that cl{x} = {p ∈ P : p ≤P x}.

Additionally, we have that for any open set U in X, if p ∈ U and for x ∈ P if we have that

p ≤P x, then x ∈ U as well. That is, open sets in X are upwards closed relative to the

≤P -ordering.

If X has an infinite T1 subspace H, then we have for all h ∈ H, cl{h} ∩ H = {h}. So,

for any x ∈ H such that x ̸= h, we have that x ̸≥P h and h ̸≥P x. So, H forms an infinite

antichain.

We now prove the following lemma.

Lemma 3.2.5. X cannot have an infinite indiscrete subspace.

Proof. Suppose H is an infinite indiscrete subspace of X. Let x ≠ y be elements of H

and without loss of generality, assume that x ̸≥P y, and so either x <P y or x and y are

incomparable. In either case, let U be the basic open set {p ∈ P : y ≤p p}. Since y ∈ U and

x ̸∈ U , we have that U ∩H is a proper nonempty open set in the subspace topology.

By this lemma, we can rule out (ii) from wGScl, as it will never occur for our particular

space X.

Finally, suppose X has an infinite subspace homeomorphic to N with the final segment

topology via a homeomorphism φ : N → H where φ(i) = hi for i ∈ N. Consider the two
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points hi and hi+1 from H, then we have that

φ([i+ 1,∞)) = H ∩ Vi+1

where Vi+1 is an open set in X. If hi+1 <P hi, then because hi+1 ∈ Vi+1, it follows that

hi ∈ Vi+1. But, hi ̸∈ φ([i+ 1,∞)) because i <N i+ 1 where <N is the standard ordering on

N, so hi ̸∈ Vi+1.

If instead we have that hi and hi+1 are incomparable in P , then there is an open set Vi in

X where hi ∈ Vi but hi+1 ̸∈ Vi and an open set Vi+1 in X where hi+1 ∈ Vi+1 but hi ̸∈ Vi+1.

By φ, we can write Vi ∩H = φ([k0,∞)) for some k0 ≤N i and Vi+1 ∩H = φ([k1,∞)) for some

k1 ≤N i+ 1. But k0 ≤N i ≤N i+ 1, and so hi+1 ∈ Vi ∩H, but Vi was an open set which did

not contain hi+1.

Hence, it must be the case that hi <P hi+1 and so we can form an infinite ascending chain

with respect to ≤P in H. The case where X has an infinite subspace homeomorphic to N

with the initial segment topology is symmetric and will yield an infinite descending chain in

P .
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