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Abstract

Normal numbers were introduced by Borel and later proven to be a weak notion of
algorithmic randomness. We introduce here a natural relativization of normality
based on generalized number representation systems. We explore the concepts
of supernormal numbers that correspond to semicomputable relativizations, and
that of highly normal numbers in terms of computable ones.
We prove several properties of these new randomness concepts. Both supernor-
mality and high normality generalize Borel absolute normality. Supernormality
is strictly between 2-randomness and effective dimension 1, while high normality
corresponds exactly to sequences of computable dimension 1 providing a more
natural characterization of this class.

Keywords: Normal number, algorithmic randomness, effective dimension,
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1 Introduction

Normal numbers were introduced by Borel in [1], and used as an early model of
randomness by Popper in [2]. Normality is certainly a weak notion of randomness since
a number is b-normal if it is random for all finite-state gambling machines as shown
by Bourke, Hitchcock, and Vinodchandran [3]. We say that a number x is normal to
base b if and only if, in the base b expansion of x, every block of digits of a given
length occurs with the same limiting frequency. This property is heavily sensitive to
the base b; the same number may be normal to one base but not normal to another.
It is customary, then, to strengthen normality in this way: a number x is said to be
absolutely normal if and only if it is normal to every base. This is still a weak notion
of randomness since examples of computable absolutely normal numbers are given in
[4–6]. A recent reference on normal numbers is Bugeaud [7].

In the present paper, we introduce a natural relativization of normality through
general number representation systems that extend the representation of real numbers
in a fixed base. Certainly the standard representation of a real number x in base b as

x =
∑
i∈Z

aib
i,

where only finitely many of the ai with positive i are nonzero, is a useful representation,
but it is not the only one imaginable, and it is, after all, a standard observation
that an appropriate choice of data structure can radically change the complexity of a
computational problem. We consider, then, alternate representations of real numbers.
Let Σb = {0, . . . , b− 1}. A system for representing real numbers is given by a function
f : Σ<ω

b → Q, where the domain is interpreted as strings naming a number and
the codomain is interpreted as the represented rational numbers. A real number x is
named by a sequence of strings (σi : i ∈ N) such that lim

i→∞
f(σi) = x. By varying the

effectiveness of f we can then obtain alternative concepts to Borel normality. Notice
that this flexible notion of representation system may have broader application.

We explore here the cases of semicomputable and computable number representa-
tion systems obtaining the new concepts of supernormal and highly normal numbers.
Just as absolutely normal numbers are numbers whose normality is robust to change
of base, these numbers are those whose normality is, in different senses, robust to all
reasonable changes of representation.

We compare supernormality and high normality with existing randomness notions,
showing that supernormal numbers are strictly between 2-randomness and effec-
tive dimension 1, and that highly normal numbers are exactly those of computable
dimension 1, which can be a more natural characterization of this interesting class.

1.1 Preliminaries

Fix U a universal prefix-free Turing machine and let K be the prefix-free Kolmogorov
complexity defined for each w ∈ 2<ω by

K(w) = min{|p| : U(p) = w}.
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For other prefix-free Turing machines M ,

KM (w) = min{|p| : M(p) = w or p = w}.

Notice that we can relativize K (and KM ) by allowing the (oracle) Turing machine
to access an oracle A. that is, KA(w) = min{|p| : UA(p) = w}.

For each x ∈ [0, 1], we identify x with the binary sequence in 2ω corresponding
to the binary representation of x. We denote with x or the complement of x the real
number with binary representation complementary to that of x, that is, x = 1− x.

We next define the effective dimension of a number.
Definition 1.1 (Mayordomo [8]). Let x ∈ 2ω. The dimension of x is

dim(x) = lim inf
n

K(x[1..n])

n
.

n-dimension is the relativization of the last concept.
Definition 1.2. Let x ∈ 2ω, n ∈ N. The n-dimension of x is

n− dim(x) = lim inf
i

K∅n−1

(x[1..i])

i
.

Lutz introduced computable dimension in [9]. We use here the definition below
following from [10] and that is also in terms of Kolmogorov complexity.
Definition 1.3. Let x ∈ 2ω. The computable dimension of x is

dimcomp(x) = inf
M

{
lim inf

n

KM (x[1..n])

n

}
,

where M ranges over all Turing machines which halt on every natural number.
Let x ∈ [0, 1], let b ∈ N, we denote as seqb(x) the base-b representation of x. For

σ ∈ Σ<ω
b we identify σ with the rational 0.σ that has σ as its finite representation in

base b.
For the sake of completeness we include here the definition of Borel normal number.

Definition 1.4 (Borel [1]). Let x ∈ [0, 1], let b ∈ N. x is b-normal if for every m ∈ N
and every w ∈ Σm

b , the asymptotic, empirical frequency of w in seqb(x) is b
−m, that is

lim
n

|{i ≤ n | seqb(x)[i−m+ 1..i] = w}
n

= b−m.

x is absolutely normal if x is b-normal for every b ∈ N.
We also include the definition of n-randomness.
Let µ be Lebesgue measure on 2ω. For A ⊆ 2<ω we denote with µ(A) =

µ({x | ∃i x[1..i] ∈ A}).
Definition 1.5 ([11, 12]). x ∈ [0, 1], n ∈ N. x is n-random if for every Uk ⊆ 2<ω

that is uniformly computably enumerable relative to ∅n−1 and such that for every
k µ (Uk) < 2−k, x is not covered by Uk, that is, there is a k0 such that for all i
x[1..i] ̸∈ Uk0

.
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Finally we recall the definition of Chaitin’s omega.
Definition 1.6. Let U be a universal Turing machine. Then Chaitin’s omega is ΩU =∑
U(σ)↓

2−|σ|. When U is fixed we use the notation Ω.

1.2 Finite-state characterizations of Borel normality

Definition 1.7. A finite state (FS) Σb-transducer D is a tuple D = (Q, q0, δ, out)
such that Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q× Σb → Q is the
transition function, and out : Q× Σb → Σ<ω

b is the output function.
There is a natural notion of (plain) Kolmogorov complexity with respect to a

transducer.
Definition 1.8. Let b ∈ N, let D be a FS Σb-transducer, σ ∈ Σ<ω

b (which is the finite
representation in base b of the rational denoted 0.σ), n ∈ N, and x ∈ [0, 1],

CD(σ) := min{|p| : D(p) = σ}

Cn,D(x) := min{CD(σ) : |0.σ − x| < b−n} ∪ {n+ 1}.
Notice that if σ is not a D-output, then CD(σ) = ∞.
Definition 1.9. Let b ∈ N, a Σb-martingale d is a function d : Σ<ω

b → [0,∞) such
that for every w ∈ Σ<ω

b ,

d(w) =

∑
a∈Σb

d(wa)

b|w|

where |w| is the length of w.
A FS-computable Σb-martingale d is a Σb-martingale such that there is a FS-

transducer that on every input w outputs d(w) (via the identification of σ ∈ Σ<ω
b with

the rational 0.σ).
Borel normality can be characterized both in terms of finite-state martingale suc-

cess and in terms of finite-state compressibility. While in terms of martingales the
concepts of randomness, corresponding to no infinite success, and dimension one, that
is, no linear exponential success, coincide, the same is probably false for the case of
compressibility. For instance, for the Lempel-Ziv algorithm, which compresses more
efficiently than any finite state machine, randomness or maximal incompressibility is
different from dimension one or compressibility ratio 1.
Theorem 1.10 (Characterization Theorem). Let x ∈ [0, 1], let b ∈ N, let h : N → N
be such that limn h(n) = ∞ and h(n) = o(n). The following are equivalent:

1. x is normal to a base b.
2. For each FS-computable Σb-martingale d, for every ϵ > 0 and almost every n, we

have
d(seqb(x)[1..n]) < 2ϵn.

3. For each FS-computable Σb-martingale d, there is an ϵ > 0 and c > 0 such that for
almost every n, we have either

d(seqb(x)[1..n]) < 2−ϵn
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or else
d(seqb(x)[1..n]) = c.

4. For each FS-computable Σb-martingale d and almost every n, we have

d(seqb(x)[1..n]) < 2h(n).

5. For each FS Σb-transducer D, for every ϵ > 0, and for almost every n, we have

CD(seqb(x)[1..n]) > n(1− ϵ).

6. For each FS Σb-transducer D, for every ϵ > 0, and for almost every n, we have

Cn,D(x) > n(1− ϵ).

Proof. Theorem 4.1 in [13] is the celebrated Schnorr-Stimm dichotomy theorem of
finite-state martingales, stating that for each infinite sequence z, if z is normal then
for each FS-computable martingale d there is an ϵ > 0 and c > 0 such that for almost
every n, d(z[1..n]) < 2−ϵn or else d(z[1..n]) = c; and if z is not normal then there is
a FS-computable martingale d and ϵ > 0 such that d(z[1..n]) > 2(1+ϵ)n for infinitely
many n.

Using Theorem 4.1 in [13] we have that (1)-(4) are all equivalent.
Dai, Lathrop, Lutz, and Mayordomo [14] proves, for any sequence z, the equiv-

alence of (2) (for each FS-computable Σb-martingale d, for every ϵ > 0 and almost
every n, d(z[1..n]) < 2ϵn) with the property of z being incompressible by finite-state
information-lossless compressors.

Doty and Moser [15] proves the equivalence of z being incompressible by finite-
state information-lossless compressors with (5), that is, for each FS Σb-transducer D,
for every ϵ > 0, and for almost every n, CD(z[1..n]) > n(1− ϵ).

Therefore (2) is equivalent to (5).
Finally Mayordomo [16] proves the equivalence of (5) and (6).

1.3 Relativizing Normality to Other Representation Systems

In order to relativize normality, let us start by reflecting on the oracle use required
in the definition of relativized effective dimension, dimA(x). The following result
characterizes dimension in terms of Kolmogorov complexity at a certain precision.
Definition 1.11 (Lutz, Mayordomo [17]). Let x ∈ [0, 1], r ∈ N.

Kr(x) = min{|p| : |U(p)− x| < 2−r}.

Theorem 1.12 (Lutz, Mayordomo [17]). Let x ∈ [0, 1]. Then

dim(x) = lim inf
r

Kr(x)

r
.
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Now let us think about dimA(x), which is based on KA
r (x), that is, on the enumer-

ation of real numbers given by UA(p) as p ranges over 2ω. The main role of the oracle
A in KA

r is to provide a representation system for real numbers in [0, 1] through this
enumeration, f(p) = UA(p).

While the standard definition of normality given above is not naturally relativiz-
able, Theorem 1.10 gives us several other options. We first describe how Kolmogorov
complexity can be relativized to a representation system.
Definition 1.13. Let b ∈ N, f : Σ<ω

b → Q, D be a FS Σb-transducer, n ∈ N, and
x ∈ [0, 1]. Then we define Cf

n , C
f
n,D : [0, 1] → N by

Cf
n(x) := min({|σ| : |f(σ)− x| < b−n} ∪ {n+ 1}),

Cf
n,D(x) := min({CD(σ) : |f(σ)− x| < b−n} ∪ {n+ 1}).

We now apply Clauses 5 and 6 of Theorem 1.10 to propose a relativized notion of
normality.
Definition 1.14. Given a function f : Σ<ω

b → Q, we say that a real x is strongly
f -normal if and only if for every finite state machine D and every ϵ > 0, for almost
every n, we have

Cf
n,D(x) ≥ n(1− ϵ).

A minimum check on such a definition is that a real which is strongly f -normal for
some appropriate choice of f should be normal. Indeed, we can let fb be the function
from Σ<ω

b to [0, 1] which returns the numerical value of a string in Σ<ω
b (under the

usual b-ary representations). Then Theorem 1.10 says exactly that every real which is
strongly fb-normal is normal to base b.

We could also imagine another formulation omitting the transducer D.
Definition 1.15. Given a function f , we say that a real x is weakly f -normal if and
only if for every ϵ > 0, for almost every n, we have

Cf
n(x) ≥ n(1− ϵ).

As with the “strong” definition, we would hope that every normal number is weakly
f -normal for an appropriate function f . Using the usual base-b representation fb as
before, Theorem 1.10 shows that every real which is normal to base b is weakly fb-
normal.
Proposition 1.16. For every function f : Σ<ω

b → Q, every real number x which is
strongly f -normal must also be weakly f -normal. On the other hand, there is a function
f and a real x such that x is weakly f -normal but not strongly f -normal.

Proof. Let x be strongly f -normal. Then, in particular, if D is the identity transducer,
we have Cf

n,D = Cf
n , so that x is weakly f -normal. On the other hand, let b > 2,

and f be the function which returns the numerical value of a string in Σ<ω
b . Let

x =
∑
i∈N

(b− 2)b−i. Then Cf
n(x) = n, while Cf

n,D(x) = n/2 for any finite automaton D

that, on input (b− 2) outputs the concatenation (b− 2)(b− 2).

6



Notice that for every x ∈ R there is a function f such that x is not weakly f -normal.
We believe that the study of weak and strong f -normality can be of independent
interest, for instance in terms of equidistribution properties [16].

In the following two sections, we describe the properties of numbers which are
(strongly or weakly) f -normal with respect to a large family of functions f . In Section
2 we consider the family of upper semi-computable functions (so that the effectiveness
condition itself includes an element of approximation), and in Section 3 we consider
the family of computable functions.

2 Supernormal Numbers

It is reasonable to expect that an effective notion of approximation allows for approx-
imation in the effective functions themselves. The following definition is common in
situations of computation where approximation is called for.
Definition 2.1. A function f : Σ<ω

b → Q is said to be upper semi-computable if and
only if there is a computable function g : N×Σ<ω

b → Q such that for each pair (m,x),
we have

1. g(m,x) ≥ f(x),
2. g(m,x) ≥ g(m+ 1, x), and
3. lim

n→∞
g(n, x) = f(x).

These functions have also been called approximable from above [18]. Notice that
they are total functions. A universal upper semi-computable function U : 2<ω → 2<ω

is such that for every b ∈ N and every upper semi-computable f : Σ<ω
b → Q there is a

p such that for all x, we have f(x) = U(⟨p, x⟩). We now define a notion of descriptive
complexity with respect to all upper semi-computable functions.
Definition 2.2. We say that a real x is supernormal if and only if it is strongly
f -normal with respect to all b ∈ N and all upper semi-computable f : Σ<ω

b → Q.
In fact, for f an upper semi-computable function, notions of descriptive complexity

with or without finite-state machines coincide.
Theorem 2.3. The following properties of a real x are equivalent.

1. x is supernormal.
2. For all b ∈ N and all upper semi-computable functions f : Σ<ω

b → Q, the real x is
weakly f -normal.

3. The real x is strongly f -normal for some universal upper semi-computable function
f .

4. The real x is weakly f -normal for some universal upper semi-computable function
f .

Proof. We first show that (1) implies (2). Suppose for all upper semi-computable
functions f , the real x is strongly f -normal, i.e., for all finite state machines D and
for all ϵ and for almost all n,

Cf
n,D(x) ≥ (1− ϵ)n.
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In particular, this holds for the identity automata I where for all σ, we have I(σ) = σ,
and CI(σ) = |σ|. So, for an arbitrary upper semi-computable function g and for I, we
have that

Cg
n,I(x) ≥ (1− ϵ)n,

and moreover, Cg
n,I(x) = Cg

n(x). Hence, Cg
n(x) ≥ (1− ϵ)n for all ϵ and for almost all n.

For (2) implies (3), suppose that for all universal upper semi-computable functions
f , x is not strongly f -normal, and so there exists a finite state machine D and ϵ, and
there exist infinitely many n where

Cf
n,D(x) < (1− ϵ)n.

We define a new upper semi-computable function g by letting g(τ) = f ◦ D(τ)
for all τ ∈ 2<ω for some universal upper semi-computable f . Since f was upper
semi-computable, so is g. Then, we have

Cg
n(x) = min{|τ | : |g(τ)− x| < 2−n} ∪ {n+ 1}

= min{CD(D(τ)) : |f(D(τ))− x| < 2−n} ∪ {n+ 1}

= min{CD(σ) : |f(σ)− x| < 2−n} ∪ {n+ 1} = Cf
n,D(x).

Since Cf
n,D(x) < (1− ϵ)n, then Cg

n(x) < (1− ϵ)n, and so x is not weakly g-normal for
our particular g.

For (3) implies (4), suppose x is strongly f -normal for some universal upper semi-
computable function f . Then for the identity automata I, we have that for all ϵ and
for almost all n

Cf
n,I(x) ≥ (1− ϵ)n.

By the definition of I, CI(σ) = |σ| and so Cf
n,I(x) = Cf

n . Hence, Cf
n ≥ (1 − ϵ)n, and

so x is weakly f -normal.
Finally we prove (4) implies (1). Suppose there exists some upper semi-computable

f such that x is not strongly f -normal, and so there exists a finite state machine D
and an ϵ such that for all k there is an n where

Cf
n,D(x) < (1− ϵ)n− k.

In particular, we have that Cf
n,D(x) < (1−ϵ)n−(k+c) for this finite state machine

D and ϵ and n depending on k + c with k arbitrary. We now define g = f ◦ D, and
this is an upper semi-computable function since f was upper semi-computable. Let U
be a universal upper semi-computable function, let c be such that for all m and y, we
have that

CU
m(y) ≤ Cg

m(y) + c,

We also get that Cg
n(x) ≤ Cf

n,D(x) < (1− ϵ)n− (k + c). Therefore,

CU
n (x) ≤ Cg

n(x) + c

< (1− ϵ)n− (k + c) + c
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= (1− ϵ)n− k.

So x cannot be weakly U -normal for given universal upper semi-computable
function U .

We have chosen the class of upper semi-computable functions here. Notice that
if, instead, we used the class of lower semi-computable functions, we would get the
set of complements of the numbers we define as supernormal here. In this sense, our
definition is robust up to complement or reflection.

We next explore the relationship of supernormality with other algorithmic ran-
domness notions.
Proposition 2.4. Every 2-random real is supernormal.

Proof. Suppose x is not weakly f -normal, with f upper semi-computable, then there
exists ϵ, such that for each k there is an n with Cf

n(x) < (1 − ϵ)n − k. Since f is
upper semi-computable, we have f ≤T ∅′. Now for each constant k, we now describe

a sequence of uniformly Σ0,∅′

1 classes (Uf,k,n : n ∈ N) such that x ∈
⋂

n,k∈N
Uf,k,n.

We let U0
f,k,n be the set of reals with the property that y ∈ U0

f,k,n if and only if

there is a string σ of length at most (1− ϵ)n− k with |f(σ)− y| < 2−2n. Since there
are only finitely many strings of that length, this condition can be checked by a ∅′
oracle (which is needed only to compute f(σ)). We refine this sequence so that Uf,n,k

is defined to be U0
f,m,k for the least m ≥ n such that µ

(
U0
f,m,k

)
< 2−n.

Indeed, something stronger is true.

Proposition 2.5. If dim∅′
(x) = 1 (usually written 2-dim(x) = 1) then x is

supernormal.

Proof. Suppose x is not weakly f -normal, with f upper semi-computable, then there
exists ϵ, such that for infinitely many n, Cf

n(x) < (1 − ϵ)n. So there is a σ such that
|σ| < (1 − ϵ)n where |f(σ) − x| < 2−n. Since f is upper semi-computable, we have
f ≤T ∅′ and C∅′

(x[1..n]) < (1− ϵ)n+ c+2+2 log n where c is the length of a program
computing f with oracle ∅′, and we use two extra bits to decide on f(σ)[1..n], its

successor, or its predecessor. It follows that dim∅′
(x) < 1.

Proposition 2.6. If a real x is supernormal, then dim(x) = 1.

Proof. Let U be a universal Turing machine. For n ∈ N, let Un be U with time limit
n. We define an upper semi-computable function f in the following way. We set

g(x, n) =

{
1 if Un(x) ↑
U(x) if Un(x) ↓

and set f(x) = lim
n→∞

g(x, n).

Now suppose that dim(x) < 1. Then there is an ϵ where for infinitely many n,
C(x[1..n]) < (1− ϵ)n, and it follows that Cf

n(x) < (1− ϵ)n for infinitely many n. Thus
x is not supernormal.
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Now we can show that there is a supernormal number which is not 1-random.
Indeed, if we let x be 2-random and for each k, insert the string 0k

2

after the first 2k

bits, the resulting x̃ infinitely often has K(x̃[1..n]) < n− log2 n and x̃ is not 1-random,
but 2-dim(x̃) = 1, so x̃ is supernormal.

We now show that there is a 1-random real which is not supernormal.
Proposition 2.7. Ω is not supernormal.

Proof. We define f in the following way. Let (qi : i ∈ N) be a computable decreasing
sequence of rationals converging to Ω. For each x, we define g(x, 0) = 1. We now
define, for n > 0,

g(σ, n) =

{
qn if |g(σ, n− 1)− qn| > 2−2|σ|

g(x, n− 1) otherwise
,

and take f(σ) = lim
n→∞

g(σ, n).

Then we argue that |f(σ)− Ω| ≤ 2−2|σ|
and Ω is not weakly f -normal.

Proposition 2.8. Ω is supernormal.

Proof. We first construct a universal machine U such that ΩU is supernormal. It
follows then that ΩW is supernormal for any universal machine W .

Fix an upper semi-computable f . We show that Ω is weakly f -normal, that is,
that for all ϵ there is a k such that for all n, Cf

n(Ω) ≥ (1 − ϵ)n − k. Let Ωs =∑
Us(σ)↓

2−|σ|. For each s, let fs(σ) = f(σ, s). We show that if n < s and σ witnesses

that Cfs
n (Ωs) < (1 − ϵ)n − k ≤ n −Ks(n) − k then |Ωs − Ω| ≥ 2−n+1 which implies

that f(σ) ≤ f(σ, s) ≤ Ω− 2−n and σ does not witness that Cf
n(Ω) < n−Ks(n)− k.

Recall that
∑
n
2−K(n) < 1. Fix a k such that 2−k

∑
n
2−K(n) < ϵ/2. At stage s, we

search for an n < s and a σ with:

1. 0 < |Ωs − f(σ, s)| < 2−n; and
2. |σ| < n−Ks(n)− k.

We increase Ω by the minimal amount necessary (2−n+1) to arrange that |Ω−f(σ, s)| ≥
2−n for each such σ and n. Therefore |Ω− f(σ)| ≥ 2−n.

Notice that we may need to address a given σ multiple times as K drops: at stage
s, σ may require attention for n + 1, but not for n because |σ| ≥ n − Ks(n) − k.
If at a stage t > s we have Kt(n) < Ks(n), then σ may require attention for n at
stage t. However, once we have addressed σ for a given n, it will never again require
attention for that n (this is because the approximation to f is non-increasing at n,
while the approximation to Ω is non-decreasing). In particular, it will not witness
Cf

n(Ω) < n−K(n)− k.
If we fix the smallest n with |σ| < n−K(n)−k, then we will issue at most a 2 ·2−n

increase to Ω on behalf of σ. For this, we construct a Turing machine M with coding
constant e, that is, if M(ρ) ↓ then U(τ) ↓ for |τ | = |ρ|+ e. For σ we add ρ with σ ⊑ ρ
and |ρ| = n− 1− e to the domain of M , and therefore 2−n+1 to Ω.
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There are fewer than 2n−K(n)−k strings of length strictly less than n−K(n)−k, so
if we partition the strings by n, we see that the total increase we issue is bounded by:∑

n

2n−K(n)−k · 2 · 2−n =
∑
n

2−K(n)−k+1 < ϵ.

Thus we do not issue too much increase to Ω, and the construction can proceed as
described. As we ensure that no σ witnesses a failure of weak f -normality, Ω is weakly
f -normal.

Corollary 2.9. The class of supernormal numbers is strictly between the classes of
2-random and that of dimension 1 numbers.

Proof. Notice that Ω is not 2-random (and in fact dim∅′
(Ω) = 0) and that dim(Ω) =

1.

The following result explains the connection of supernormality to absolute normal-
ity.
Corollary 2.10. If a real number x is supernormal, then it is absolutely normal, and
there exists an x which is absolutely normal but not supernormal.

Proof. This is an easy consequence of Proposition 2.6. Additionally, [4] gives an exam-
ple of an absolutely normal number which is computable, hence not supernormal.

We now prove some basic properties of the class of supernormal numbers.
Proposition 2.11. If x is supernormal and q ∈ Q+, then qx is supernormal.

Proof. Let f : Σ<ω
b → Q be upper semi-computable, q ∈ Q+. Then qf(σ) = q · f(σ)

and 1
q f(σ) =

1
q · f(σ) are both upper semi-computable.

If x is weakly f -normal, then qx is weakly qf -normal. Moreover, if qx fails to be
weakly f -normal, then x fails to be weakly 1

q f -normal.

Proposition 2.12. Every real x ∈ [0, 1] can be written as the sum of two supernormal
numbers.

Proof. The set of 2-randoms form a measure 1 set, so the set of supernormals also
form a measure 1 set as it is a superset of the former. By a standard argument, one
can prove the result.

This shows that the set of supernormal numbers is not necessarily closed under
addition. A similar argument also shows that any real x ∈ [0, 1) can be expressed as
the product of two supernormal numbers.
Proposition 2.13. There are x, y, each not supernormal, such that x + y is
supernormal.

Proof. Let z =
∑
i∈N

zi2
−i be supernormal, let

x =
∑
i∈N

z2i2
−2i,

11



and
y =

∑
i∈N

z2i+12
−(2i+1).

Since x and y are not normal, they are not supernormal.

Proposition 2.14. Supernormal numbers are not closed under limits, i.e., there exists
a sequence (nk)k∈ω of supernormal numbers such that lim

k→∞
nk = n is not supernormal.

Proof. Let x be a supernormal, then define the sequence {nk}k∈N by nk = x2−k. Each
nk is supernormal by Proposition 2.11, but lim

k→∞
nk = 0 and 0 is not supernormal.

3 Highly Normal Numbers

We now turn to our attention to a different class of numbers, the highly normal
numbers, which are obtained when we require weak (and strong) f -normality for total
computable functions f as opposed to upper semi-computable functions.
Definition 3.1. We say that a real x is highly normal if and only if it is strongly
f -normal with respect to all total computable f .

For highly normal numbers, we have a similar result to Theorem 2.3, though there
are no conditions analogous to (3) and (4) from Theorem 2.3 mentioning a universal
total computable function f because one does not exist.
Theorem 3.2. The following properties of a real x are equivalent.

1. For all total computable functions f , the real x is strongly f -normal.
2. For all total computable functions f , the real x is weakly f -normal.

Proof. We first show that (1) implies (2). Suppose for all computable functions f , the
real x is strongly f -normal, i.e., for all finite state machines D and ϵ and for almost
all n,

Cf
n,D(x) ≥ (1− ϵ)n.

So, in particular, this holds for the identity automata I where CI(σ) = |σ|. So, for an
arbitrary total computable function g and for I,

Cg
n,I(x) ≥ (1− ϵ)n,

and moreover, Cg
n,I(x) = Cg

n(x). Hence, Gg
n(x) ≥ (1− ϵ)n, and since g was arbitrary,

we have shown (2).
Suppose x is not strongly f -normal for some computable function f . So, there

exists a finite state machine D and ϵ such that there exists an n where

Cf
n,D(x) < (1− ϵ)n.

Let g = f ◦D, then because D is a finite state machine and f is computable, g is
a computable function. By the same argument for (2) implies (3) in Theorem 2.3, we

have that Cg
n(x) ≤ Cf

n,D, and so Cg
n(x) < (1− ϵ)n and thus x is not weakly g-normal

for some computable function g.

12



As before, we note that every highly normal number is absolutely normal.
Moreover, every supernormal is highly normal, and this implication is strict.

The following theorem is important in that it gives a novel characterization of
the reals with computable dimension 1. To our taste, the definition of highly normal
numbers is more natural than the standard definition of computable dimension 1.
Theorem 3.3. A real x is highly normal if and only if dimcomp(x) = 1.

Proof. Assume that dimcomp(x) < 1. Then KM (x[1..n]) < (1 − ϵ)n for some always
halting Turing machine M , ϵ > 0 and infinitely many n. Define f = fM a computable
function. Then x is not f -weakly normal and therefore x is not highly normal.

For the other direction, suppose that f is a computable function and x is not
weakly f -normal. Then there exists an ϵ > 0 and for infinitely many n, we have
Cf

n(x) < (1 − ϵ)n. So there is a σ such that |σ| < (1 − ϵ)n where |f(σ) − x| < 2−n.
Hence, for an always halting Turing machine M , we have

KM (x[1..n]) < (1− ϵ)n+ c+ 2 + 2 log n,

where c is the length of a program computing f , and we use two extra bits to decide
on f(σ)[1..n], its successor, or its predecessor. So,

lim inf
n→∞

KM (x[1..n])

n
< lim inf

n→∞

(1− ϵ)n+ c+ 2 + 2 log n

n
= 1− ϵ.

It follows that dimcomp(x) < 1.

Corollary 3.4. There is a highly normal number x which is not supernormal.

Proof. Ω is has effective dimension 1 and so by Theorem 3.3, it is highly normal and
by Proposition 2.7, it is not supernormal.

The following property of the class of highly normal numbers directly follows from
Theorem 3.3.
Proposition 3.5. Highly normal numbers are closed under complement.
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