
Computable Categoricity Relative to a Degree

Ph.D. General Exam

Java Darleen Villano

November 14th, 2022

University of Connecticut

1



Outline

1. Preliminaries

2. Overview of the exploration of computable categoricity

3. Current work

2



Preliminaries



Definitions

Definition

A function f : N → N is a (partial) computable function if there

exists an algorithm which computes the value of f on a given

input.

Definition

A set A ⊆ N is computable if its characteristic function χA is a

computable function.

Definition

A set A is computably enumerable (abbreviated as c.e.) if it is

the range of a total computable function f .

3



Definitions

Definition

A function f : N → N is a (partial) computable function if there

exists an algorithm which computes the value of f on a given

input.

Definition

A set A ⊆ N is computable if its characteristic function χA is a

computable function.

Definition

A set A is computably enumerable (abbreviated as c.e.) if it is

the range of a total computable function f .

3



Definitions

Definition

A function f : N → N is a (partial) computable function if there

exists an algorithm which computes the value of f on a given

input.

Definition

A set A ⊆ N is computable if its characteristic function χA is a

computable function.

Definition

A set A is computably enumerable (abbreviated as c.e.) if it is

the range of a total computable function f .

3



Definitions

There is an effective list {Φe : e ∈ ω} of all partial computable

functions in which each function is assigned a numerical index.

We can extend computations by allowing ourselves access to

information given by a specified set, which is usually called the

oracle.

Notation

We write f A(n) ↓= a if f with oracle set A converges on input n

and outputs a. Otherwise, we write f A(n) ↑.

Remark

If f A(n) ↓= a, then we only use a finite initial segment σ of the

oracle A to converge on n. That is, if f A(n) ↓= a, then there

exists a finite string σ ⊆ A such that f σ(n) ↓= a.

4



Definitions

There is an effective list {Φe : e ∈ ω} of all partial computable

functions in which each function is assigned a numerical index.

We can extend computations by allowing ourselves access to

information given by a specified set, which is usually called the

oracle.

Notation

We write f A(n) ↓= a if f with oracle set A converges on input n

and outputs a. Otherwise, we write f A(n) ↑.

Remark

If f A(n) ↓= a, then we only use a finite initial segment σ of the

oracle A to converge on n. That is, if f A(n) ↓= a, then there

exists a finite string σ ⊆ A such that f σ(n) ↓= a.

4



Definitions

There is an effective list {Φe : e ∈ ω} of all partial computable

functions in which each function is assigned a numerical index.

We can extend computations by allowing ourselves access to

information given by a specified set, which is usually called the

oracle.

Notation

We write f A(n) ↓= a if f with oracle set A converges on input n

and outputs a. Otherwise, we write f A(n) ↑.

Remark

If f A(n) ↓= a, then we only use a finite initial segment σ of the

oracle A to converge on n. That is, if f A(n) ↓= a, then there

exists a finite string σ ⊆ A such that f σ(n) ↓= a.

4



Definitions

There is an effective list {Φe : e ∈ ω} of all partial computable

functions in which each function is assigned a numerical index.

We can extend computations by allowing ourselves access to

information given by a specified set, which is usually called the

oracle.

Notation

We write f A(n) ↓= a if f with oracle set A converges on input n

and outputs a. Otherwise, we write f A(n) ↑.

Remark

If f A(n) ↓= a, then we only use a finite initial segment σ of the

oracle A to converge on n. That is, if f A(n) ↓= a, then there

exists a finite string σ ⊆ A such that f σ(n) ↓= a.

4



Definitions

Definition

A graph G = (G ,E ) is computable if its domain, G , is ω and

the edge relation E is a computable relation.

Recall that for a graph G = (G ,E ), the edge relation E is the set

{(a, b) : a, b ∈ G and there is an edge connecting a and b}.

5



Definitions

Definition

A graph G = (G ,E ) is computable if its domain, G , is ω and

the edge relation E is a computable relation.

Recall that for a graph G = (G ,E ), the edge relation E is the set

{(a, b) : a, b ∈ G and there is an edge connecting a and b}.

5



Overview of the exploration of

computable categoricity



Computable categoricity

Definition

Let A be a computable structure. A is computably categorical

if for every computable copy B of A, there exists a computable

isomorphism between A and B.

Throughout the talk, I will abbreviate “being computably

categorical” to being c.c.

Example

Let L = (A, <L) be a computable linear ordering. Two elements

a, b ∈ A are said to be adjacent if a <L b and there is no c ∈ A

such that a <L c <L b.

L is c.c. if and only if it has only finitely many pairs of adjacent

elements.

6



Computable categoricity

Definition

Let A be a computable structure. A is computably categorical

if for every computable copy B of A, there exists a computable

isomorphism between A and B.

Throughout the talk, I will abbreviate “being computably

categorical” to being c.c.

Example

Let L = (A, <L) be a computable linear ordering. Two elements

a, b ∈ A are said to be adjacent if a <L b and there is no c ∈ A

such that a <L c <L b.

L is c.c. if and only if it has only finitely many pairs of adjacent

elements.

6



Computable categoricity

Definition

Let A be a computable structure. A is computably categorical

if for every computable copy B of A, there exists a computable

isomorphism between A and B.

Throughout the talk, I will abbreviate “being computably

categorical” to being c.c.

Example

Let L = (A, <L) be a computable linear ordering. Two elements

a, b ∈ A are said to be adjacent if a <L b and there is no c ∈ A

such that a <L c <L b.

L is c.c. if and only if it has only finitely many pairs of adjacent

elements.

6



Relativizing c.c.-ness

The following relativization of c.c.-ness has been the studied

extensively in the past.

Definition

Let A be a computable structure. A is relatively computably

categorical if for every copy (not necessarily computable) B of

A, there is a B-computable isomorphism between A and B.

Remark

If a structure is relatively computably categorical (abbreviated as

relatively c.c.), then it is c.c. already.

Historically, there have been two approaches in exploring the

connection between c.c.-ness and relatively c.c.-ness: an algebraic

perspective and a model theoretic perspective.

7



Relativizing c.c.-ness

The following relativization of c.c.-ness has been the studied

extensively in the past.

Definition

Let A be a computable structure. A is relatively computably

categorical if for every copy (not necessarily computable) B of

A, there is a B-computable isomorphism between A and B.

Remark

If a structure is relatively computably categorical (abbreviated as

relatively c.c.), then it is c.c. already.

Historically, there have been two approaches in exploring the

connection between c.c.-ness and relatively c.c.-ness: an algebraic

perspective and a model theoretic perspective.

7



Relativizing c.c.-ness

The following relativization of c.c.-ness has been the studied

extensively in the past.

Definition

Let A be a computable structure. A is relatively computably

categorical if for every copy (not necessarily computable) B of

A, there is a B-computable isomorphism between A and B.

Remark

If a structure is relatively computably categorical (abbreviated as

relatively c.c.), then it is c.c. already.

Historically, there have been two approaches in exploring the

connection between c.c.-ness and relatively c.c.-ness: an algebraic

perspective and a model theoretic perspective.

7



Relativizing c.c.-ness

The following relativization of c.c.-ness has been the studied

extensively in the past.

Definition

Let A be a computable structure. A is relatively computably

categorical if for every copy (not necessarily computable) B of

A, there is a B-computable isomorphism between A and B.

Remark

If a structure is relatively computably categorical (abbreviated as

relatively c.c.), then it is c.c. already.

Historically, there have been two approaches in exploring the

connection between c.c.-ness and relatively c.c.-ness:

an algebraic

perspective and a model theoretic perspective.

7



Relativizing c.c.-ness

The following relativization of c.c.-ness has been the studied

extensively in the past.

Definition

Let A be a computable structure. A is relatively computably

categorical if for every copy (not necessarily computable) B of

A, there is a B-computable isomorphism between A and B.

Remark

If a structure is relatively computably categorical (abbreviated as

relatively c.c.), then it is c.c. already.

Historically, there have been two approaches in exploring the

connection between c.c.-ness and relatively c.c.-ness: an algebraic

perspective and a model theoretic perspective.

7



The algebraic perspective

Question: Can we give algebraic characterizations of c.c.-ness in

natural classes of structures?

Are there structures where this is not

possible?

Example

• Remmel [7] showed that a computable linear ordering L is c.c.

if and only if L has only finitely many pairs of adjacent

elements.

• Ershov [4] showed that an algebraically closed field is c.c. if

and only if it has a finite transcendence degree over its prime

subfield.

• Goncharov, Lempp, and Solomon [5] showed that an ordered

abelian group is c.c. if and only if it has finite rank.

8



The algebraic perspective

Question: Can we give algebraic characterizations of c.c.-ness in

natural classes of structures? Are there structures where this is not

possible?

Example

• Remmel [7] showed that a computable linear ordering L is c.c.

if and only if L has only finitely many pairs of adjacent

elements.

• Ershov [4] showed that an algebraically closed field is c.c. if

and only if it has a finite transcendence degree over its prime

subfield.

• Goncharov, Lempp, and Solomon [5] showed that an ordered

abelian group is c.c. if and only if it has finite rank.

8



The algebraic perspective

Question: Can we give algebraic characterizations of c.c.-ness in

natural classes of structures? Are there structures where this is not

possible?

Example

• Remmel [7] showed that a computable linear ordering L is c.c.

if and only if L has only finitely many pairs of adjacent

elements.

• Ershov [4] showed that an algebraically closed field is c.c. if

and only if it has a finite transcendence degree over its prime

subfield.

• Goncharov, Lempp, and Solomon [5] showed that an ordered

abelian group is c.c. if and only if it has finite rank.

8



The algebraic perspective

Question: Can we give algebraic characterizations of c.c.-ness in

natural classes of structures? Are there structures where this is not

possible?

Example

• Remmel [7] showed that a computable linear ordering L is c.c.

if and only if L has only finitely many pairs of adjacent

elements.

• Ershov [4] showed that an algebraically closed field is c.c. if

and only if it has a finite transcendence degree over its prime

subfield.

• Goncharov, Lempp, and Solomon [5] showed that an ordered

abelian group is c.c. if and only if it has finite rank.

8



The algebraic perspective

Question: Can we give algebraic characterizations of c.c.-ness in

natural classes of structures? Are there structures where this is not

possible?

Example

• Remmel [7] showed that a computable linear ordering L is c.c.

if and only if L has only finitely many pairs of adjacent

elements.

• Ershov [4] showed that an algebraically closed field is c.c. if

and only if it has a finite transcendence degree over its prime

subfield.

• Goncharov, Lempp, and Solomon [5] showed that an ordered

abelian group is c.c. if and only if it has finite rank.

8



Algebraic characterizations under relativization

Typically, if there is an algebraic characterization for being c.c. in a

class of structures, then being relatively c.c. is equivalent to being

c.c. for those structures.

For example, suppose a computable linear order L has finitely

many adjacent pairs, and L′ is any copy of L.

We can build an isomorphism by nonuniformly matching the

finitely many adjacent pairs correctly, and then extending the map

by a back-and-forth construction.

To do the back-and-forth construction, we only need to be able to

compute ≤L and ≤L′ , and so the isomorphism will be computable

in L′.

9



Algebraic characterizations under relativization

Typically, if there is an algebraic characterization for being c.c. in a

class of structures, then being relatively c.c. is equivalent to being

c.c. for those structures.

For example, suppose a computable linear order L has finitely

many adjacent pairs, and L′ is any copy of L.

We can build an isomorphism by nonuniformly matching the

finitely many adjacent pairs correctly, and then extending the map

by a back-and-forth construction.

To do the back-and-forth construction, we only need to be able to

compute ≤L and ≤L′ , and so the isomorphism will be computable

in L′.

9



Algebraic characterizations under relativization

Typically, if there is an algebraic characterization for being c.c. in a

class of structures, then being relatively c.c. is equivalent to being

c.c. for those structures.

For example, suppose a computable linear order L has finitely

many adjacent pairs, and L′ is any copy of L.

We can build an isomorphism by nonuniformly matching the

finitely many adjacent pairs correctly, and then extending the map

by a back-and-forth construction.

To do the back-and-forth construction, we only need to be able to

compute ≤L and ≤L′ , and so the isomorphism will be computable

in L′.

9



Algebraic characterizations under relativization

Typically, if there is an algebraic characterization for being c.c. in a

class of structures, then being relatively c.c. is equivalent to being

c.c. for those structures.

For example, suppose a computable linear order L has finitely

many adjacent pairs, and L′ is any copy of L.

We can build an isomorphism by nonuniformly matching the

finitely many adjacent pairs correctly, and then extending the map

by a back-and-forth construction.

To do the back-and-forth construction, we only need to be able to

compute ≤L and ≤L′ , and so the isomorphism will be computable

in L′.

9



The algebraic perspective

There are structures which do not have a purely algebraic

characterization of c.c.-ness.

For example: partially ordered sets and rings.

We now switch to the model theoretic perspective, which will help

us fill in this gap later.

10



The algebraic perspective

There are structures which do not have a purely algebraic

characterization of c.c.-ness.

For example: partially ordered sets and rings.

We now switch to the model theoretic perspective, which will help

us fill in this gap later.

10



The algebraic perspective

There are structures which do not have a purely algebraic

characterization of c.c.-ness.

For example: partially ordered sets and rings.

We now switch to the model theoretic perspective, which will help

us fill in this gap later.

10



The model theoretic perspective

Question: Can we use the notion of being c.c. to effectivize

model theory?

Definition

A Scott set for a countable structure A is a set of formulas F

with a fixed finite set of parameters satisfying:

(1) For each tuples a ∈ A, there is a φ ∈ F such that A |= φ(a),

and

(2) if a and b satisfy the same formula in F , then they are

automorphic.

F is formally Σ0
1 if F is a c.e. set of Σ0

1 formulas.

11



The model theoretic perspective

Question: Can we use the notion of being c.c. to effectivize

model theory?

Definition

A Scott set for a countable structure A is a set of formulas F

with a fixed finite set of parameters satisfying:

(1) For each tuples a ∈ A, there is a φ ∈ F such that A |= φ(a),

and

(2) if a and b satisfy the same formula in F , then they are

automorphic.

F is formally Σ0
1 if F is a c.e. set of Σ0

1 formulas.

11



The model theoretic perspective

A structure being relatively c.c. coincides with the following

syntactic condition.

Theorem (Ash, Knight, Manasse, and Slaman [1])

A structure is relatively c.c. if and only if it has a formally Σ1

Scott family.

However, there is no syntactic characterization like the result

above for just computable categoricity, since the index set of all

c.c. structures is Π1
1 complete [3].

12



The model theoretic perspective

A structure being relatively c.c. coincides with the following

syntactic condition.

Theorem (Ash, Knight, Manasse, and Slaman [1])

A structure is relatively c.c. if and only if it has a formally Σ1

Scott family.

However, there is no syntactic characterization like the result

above for just computable categoricity, since the index set of all

c.c. structures is Π1
1 complete [3].

12



The model theoretic perspective

A structure being relatively c.c. coincides with the following

syntactic condition.

Theorem (Ash, Knight, Manasse, and Slaman [1])

A structure is relatively c.c. if and only if it has a formally Σ1

Scott family.

However, there is no syntactic characterization like the result

above for just computable categoricity, since the index set of all

c.c. structures is Π1
1 complete [3].

12



The model theoretic perspective

We now pivot to a new question for the rest of this overview of the

model theoretic perspective.

Question: For structures where being c.c. cannot be algebraically

characterized, what additional conditions are needed to show that

being c.c. is equivalent to being relatively c.c.?

Theorem (Goncharov [6])

If a structure is c.c. and its ∀∃ theory is decidable, then it is

relatively c.c.

13



The model theoretic perspective

We now pivot to a new question for the rest of this overview of the

model theoretic perspective.

Question: For structures where being c.c. cannot be algebraically

characterized, what additional conditions are needed to show that

being c.c. is equivalent to being relatively c.c.?

Theorem (Goncharov [6])

If a structure is c.c. and its ∀∃ theory is decidable, then it is

relatively c.c.

13



The model theoretic perspective

We now pivot to a new question for the rest of this overview of the

model theoretic perspective.

Question: For structures where being c.c. cannot be algebraically

characterized, what additional conditions are needed to show that

being c.c. is equivalent to being relatively c.c.?

Theorem (Goncharov [6])

If a structure is c.c. and its ∀∃ theory is decidable, then it is

relatively c.c.

13



Exploring the gap

Now that we have explored some results about c.c.-ness and

relatively c.c.-ness, let’s take the time to motivate my current

research project.

Definition

Let A be a computable structure. A is computably categorical

relative to a degree d if for every d-computable copy B of A,

there exists a d-computable isomorphism between A and B.

Fact

A computable structure A is relatively computably categorical

if for all X ∈ 2N, A is c.c. relative to X .

Question: Are there structures which are in between being c.c.

and being relatively c.c.? What do they look like?

14



Exploring the gap

Now that we have explored some results about c.c.-ness and

relatively c.c.-ness, let’s take the time to motivate my current

research project.

Definition

Let A be a computable structure. A is computably categorical

relative to a degree d if for every d-computable copy B of A,

there exists a d-computable isomorphism between A and B.

Fact

A computable structure A is relatively computably categorical

if for all X ∈ 2N, A is c.c. relative to X .

Question: Are there structures which are in between being c.c.

and being relatively c.c.? What do they look like?

14



Exploring the gap

Now that we have explored some results about c.c.-ness and

relatively c.c.-ness, let’s take the time to motivate my current

research project.

Definition

Let A be a computable structure. A is computably categorical

relative to a degree d if for every d-computable copy B of A,

there exists a d-computable isomorphism between A and B.

Fact

A computable structure A is relatively computably categorical

if for all X ∈ 2N, A is c.c. relative to X .

Question: Are there structures which are in between being c.c.

and being relatively c.c.? What do they look like?

14



Exploring the gap

Now that we have explored some results about c.c.-ness and

relatively c.c.-ness, let’s take the time to motivate my current

research project.

Definition

Let A be a computable structure. A is computably categorical

relative to a degree d if for every d-computable copy B of A,

there exists a d-computable isomorphism between A and B.

Fact

A computable structure A is relatively computably categorical

if for all X ∈ 2N, A is c.c. relative to X .

Question: Are there structures which are in between being c.c.

and being relatively c.c.? What do they look like?

14



Exploring the gap

We have the following fact.

Fact ([2])

If A is a computable structure and it is computably categorical

relative to some degree d ≥ 0′′ (abbreviated as c.c. relative to

d), then A has a 0′′-computable Σ0
1 Scott family.

This implies that A, as in the statement of the Fact, must be c.c.

relative to all degrees above 0′′.

15



Exploring the gap

We have the following fact.

Fact ([2])

If A is a computable structure and it is computably categorical

relative to some degree d ≥ 0′′ (abbreviated as c.c. relative to

d), then A has a 0′′-computable Σ0
1 Scott family.

This implies that A, as in the statement of the Fact, must be c.c.

relative to all degrees above 0′′.

15



Exploring the gap

We have the following fact.

Fact ([2])

If A is a computable structure and it is computably categorical

relative to some degree d ≥ 0′′ (abbreviated as c.c. relative to

d), then A has a 0′′-computable Σ0
1 Scott family.

This implies that A, as in the statement of the Fact, must be c.c.

relative to all degrees above 0′′.

15



The cone above 0′′

If A is c.c. relative to some d ≥ 0′′, then it is c.c. relative to all

degrees above 0′′.

The contrapositive of the Fact also gives us that if A does not

have a 0′′-computable Σ0
1 Scott family, then it is not c.c. relative

to any d ≥ 0′′.

So at 0′′ and above, any computable structure A will settle on

whether it is c.c. relative to all degrees or to none of them.

Question: What happens between 0 and 0′′?

16



The cone above 0′′

If A is c.c. relative to some d ≥ 0′′, then it is c.c. relative to all

degrees above 0′′.

The contrapositive of the Fact also gives us that if A does not

have a 0′′-computable Σ0
1 Scott family, then it is not c.c. relative

to any d ≥ 0′′.

So at 0′′ and above, any computable structure A will settle on

whether it is c.c. relative to all degrees or to none of them.

Question: What happens between 0 and 0′′?

16



The cone above 0′′

If A is c.c. relative to some d ≥ 0′′, then it is c.c. relative to all

degrees above 0′′.

The contrapositive of the Fact also gives us that if A does not

have a 0′′-computable Σ0
1 Scott family, then it is not c.c. relative

to any d ≥ 0′′.

So at 0′′ and above, any computable structure A will settle on

whether it is c.c. relative to all degrees or to none of them.

Question: What happens between 0 and 0′′?

16



The cone above 0′′

If A is c.c. relative to some d ≥ 0′′, then it is c.c. relative to all

degrees above 0′′.

The contrapositive of the Fact also gives us that if A does not

have a 0′′-computable Σ0
1 Scott family, then it is not c.c. relative

to any d ≥ 0′′.

So at 0′′ and above, any computable structure A will settle on

whether it is c.c. relative to all degrees or to none of them.

Question: What happens between 0 and 0′′?

16



A surprising result

Downey, Harrison-Trainor, and Melnikov recently showed the

following surprising result:

Theorem (Downey, Harrison-Trainor, Melnikov [2])

There is a computable structure A and c.e. degrees

0 = Y0 <T X0 <T Y1 <T X1 <T . . . such that

(1) A is computably categorical relative to Yi for each i ,

(2) A is not computably categorical relative to Xi for each i ,

(3) A is computably categorical relative to 0′.

My current project is to find similar patterns in which we allow the

degrees to be incomparable.

17



A surprising result

Downey, Harrison-Trainor, and Melnikov recently showed the

following surprising result:

Theorem (Downey, Harrison-Trainor, Melnikov [2])

There is a computable structure A and c.e. degrees

0 = Y0 <T X0 <T Y1 <T X1 <T . . . such that

(1) A is computably categorical relative to Yi for each i ,

(2) A is not computably categorical relative to Xi for each i ,

(3) A is computably categorical relative to 0′.

My current project is to find similar patterns in which we allow the

degrees to be incomparable.

17



A surprising result

Downey, Harrison-Trainor, and Melnikov recently showed the

following surprising result:

Theorem (Downey, Harrison-Trainor, Melnikov [2])

There is a computable structure A and c.e. degrees

0 = Y0 <T X0 <T Y1 <T X1 <T . . . such that

(1) A is computably categorical relative to Yi for each i ,

(2) A is not computably categorical relative to Xi for each i ,

(3) A is computably categorical relative to 0′.

My current project is to find similar patterns in which we allow the

degrees to be incomparable.

17



A surprising result

Downey, Harrison-Trainor, and Melnikov recently showed the

following surprising result:

Theorem (Downey, Harrison-Trainor, Melnikov [2])

There is a computable structure A and c.e. degrees

0 = Y0 <T X0 <T Y1 <T X1 <T . . . such that

(1) A is computably categorical relative to Yi for each i ,

(2) A is not computably categorical relative to Xi for each i ,

(3) A is computably categorical relative to 0′.

My current project is to find similar patterns in which we allow the

degrees to be incomparable.

17



A surprising result

Downey, Harrison-Trainor, and Melnikov recently showed the

following surprising result:

Theorem (Downey, Harrison-Trainor, Melnikov [2])

There is a computable structure A and c.e. degrees

0 = Y0 <T X0 <T Y1 <T X1 <T . . . such that

(1) A is computably categorical relative to Yi for each i ,

(2) A is not computably categorical relative to Xi for each i ,

(3) A is computably categorical relative to 0′.

My current project is to find similar patterns in which we allow the

degrees to be incomparable.

17



A surprising result

Downey, Harrison-Trainor, and Melnikov recently showed the

following surprising result:

Theorem (Downey, Harrison-Trainor, Melnikov [2])

There is a computable structure A and c.e. degrees

0 = Y0 <T X0 <T Y1 <T X1 <T . . . such that

(1) A is computably categorical relative to Yi for each i ,

(2) A is not computably categorical relative to Xi for each i ,

(3) A is computably categorical relative to 0′.

My current project is to find similar patterns in which we allow the

degrees to be incomparable.

17



Current work



A special case

Theorem (Downey, Harrison-Trainor, Melnikov [2])

There exists a computable directed graph G and a c.e. set X

such that

(1) G is computably categorical, and

(2) G is not computably categorical relative to X .

Proof sketch.

To prove this, we want to build the following:

(1) the computable directed graph G,
(2) the c.e. set X ,

(3) the graph B such that B ≤T X and B is a copy of G, and
(4) for each i ∈ N such that Mi

∼= G, a computable isomorphism

fi : G → Mi (where Mi is the ith computable graph)

18



A special case

Theorem (Downey, Harrison-Trainor, Melnikov [2])

There exists a computable directed graph G and a c.e. set X

such that

(1) G is computably categorical, and

(2) G is not computably categorical relative to X .

Proof sketch.

To prove this, we want to build the following:

(1) the computable directed graph G,

(2) the c.e. set X ,

(3) the graph B such that B ≤T X and B is a copy of G, and
(4) for each i ∈ N such that Mi

∼= G, a computable isomorphism

fi : G → Mi (where Mi is the ith computable graph)

18



A special case

Theorem (Downey, Harrison-Trainor, Melnikov [2])

There exists a computable directed graph G and a c.e. set X

such that

(1) G is computably categorical, and

(2) G is not computably categorical relative to X .

Proof sketch.

To prove this, we want to build the following:

(1) the computable directed graph G,
(2) the c.e. set X ,

(3) the graph B such that B ≤T X and B is a copy of G, and
(4) for each i ∈ N such that Mi

∼= G, a computable isomorphism

fi : G → Mi (where Mi is the ith computable graph)

18



A special case

Theorem (Downey, Harrison-Trainor, Melnikov [2])

There exists a computable directed graph G and a c.e. set X

such that

(1) G is computably categorical, and

(2) G is not computably categorical relative to X .

Proof sketch.

To prove this, we want to build the following:

(1) the computable directed graph G,
(2) the c.e. set X ,

(3) the graph B such that B ≤T X and B is a copy of G, and

(4) for each i ∈ N such that Mi
∼= G, a computable isomorphism

fi : G → Mi (where Mi is the ith computable graph)

18



A special case

Theorem (Downey, Harrison-Trainor, Melnikov [2])

There exists a computable directed graph G and a c.e. set X

such that

(1) G is computably categorical, and

(2) G is not computably categorical relative to X .

Proof sketch.

To prove this, we want to build the following:

(1) the computable directed graph G,
(2) the c.e. set X ,

(3) the graph B such that B ≤T X and B is a copy of G, and
(4) for each i ∈ N such that Mi

∼= G, a computable isomorphism

fi : G → Mi (where Mi is the ith computable graph)
18



Listing our requirements

We have the following requirements:

• Si : if G ∼= Mi , then there exists a computable isomorphism

fi : G → Mi , and

• Re : ΦX
e : G → B is not an isomorphism.

We want to meet all such requirements for all i , e ∈ ω with our

construction.

The Si requirements are working towards making G computably

categorical.

The Re requirements are working towards making G not

computably categorical relative to our c.e. set X .

19



Listing our requirements

We have the following requirements:

• Si : if G ∼= Mi , then there exists a computable isomorphism

fi : G → Mi , and

• Re : ΦX
e : G → B is not an isomorphism.

We want to meet all such requirements for all i , e ∈ ω with our

construction.

The Si requirements are working towards making G computably

categorical.

The Re requirements are working towards making G not

computably categorical relative to our c.e. set X .

19



Listing our requirements

We have the following requirements:

• Si : if G ∼= Mi , then there exists a computable isomorphism

fi : G → Mi , and

• Re : ΦX
e : G → B is not an isomorphism.

We want to meet all such requirements for all i , e ∈ ω with our

construction.

The Si requirements are working towards making G computably

categorical.

The Re requirements are working towards making G not

computably categorical relative to our c.e. set X .

19



Listing our requirements

We have the following requirements:

• Si : if G ∼= Mi , then there exists a computable isomorphism

fi : G → Mi , and

• Re : ΦX
e : G → B is not an isomorphism.

We want to meet all such requirements for all i , e ∈ ω with our

construction.

The Si requirements are working towards making G computably

categorical.

The Re requirements are working towards making G not

computably categorical relative to our c.e. set X .

19



Listing our requirements

We have the following requirements:

• Si : if G ∼= Mi , then there exists a computable isomorphism

fi : G → Mi , and

• Re : ΦX
e : G → B is not an isomorphism.

We want to meet all such requirements for all i , e ∈ ω with our

construction.

The Si requirements are working towards making G computably

categorical.

The Re requirements are working towards making G not

computably categorical relative to our c.e. set X .

19



Listing our requirements

We have the following requirements:

• Si : if G ∼= Mi , then there exists a computable isomorphism

fi : G → Mi , and

• Re : ΦX
e : G → B is not an isomorphism.

We want to meet all such requirements for all i , e ∈ ω with our

construction.

The Si requirements are working towards making G computably

categorical.

The Re requirements are working towards making G not

computably categorical relative to our c.e. set X .

19



Building our graphs G and B

The graphs G and B will be built globally.

At stage s = 0, we set their domains G = B = ∅.

At stage s > 0, we add a2s and a2s+1 as root nodes to G and

attach 2-loop to each node. Then, we attach a (5s + 1)-loop to

a2s and a (5s + 2)-loop to a2s+1.

We mirror these actions for our graph B, where b2s and b2s+1 are

the corresponding root nodes.

Definition

The root node a2s in our graph G with its loops is the 2sth

connected component or just the 2sth component of G.

20



Building our graphs G and B

The graphs G and B will be built globally.

At stage s = 0, we set their domains G = B = ∅.

At stage s > 0, we add a2s and a2s+1 as root nodes to G and

attach 2-loop to each node. Then, we attach a (5s + 1)-loop to

a2s and a (5s + 2)-loop to a2s+1.

We mirror these actions for our graph B, where b2s and b2s+1 are

the corresponding root nodes.

Definition

The root node a2s in our graph G with its loops is the 2sth

connected component or just the 2sth component of G.

20



Building our graphs G and B

The graphs G and B will be built globally.

At stage s = 0, we set their domains G = B = ∅.

At stage s > 0, we add a2s and a2s+1 as root nodes to G and

attach 2-loop to each node. Then, we attach a (5s + 1)-loop to

a2s and a (5s + 2)-loop to a2s+1.

We mirror these actions for our graph B, where b2s and b2s+1 are

the corresponding root nodes.

Definition

The root node a2s in our graph G with its loops is the 2sth

connected component or just the 2sth component of G.

20



Building our graphs G and B

The graphs G and B will be built globally.

At stage s = 0, we set their domains G = B = ∅.

At stage s > 0, we add a2s and a2s+1 as root nodes to G and

attach 2-loop to each node. Then, we attach a (5s + 1)-loop to

a2s and a (5s + 2)-loop to a2s+1.

We mirror these actions for our graph B, where b2s and b2s+1 are

the corresponding root nodes.

Definition

The root node a2s in our graph G with its loops is the 2sth

connected component or just the 2sth component of G.

20



Building our graphs G and B

The graphs G and B will be built globally.

At stage s = 0, we set their domains G = B = ∅.

At stage s > 0, we add a2s and a2s+1 as root nodes to G and

attach 2-loop to each node. Then, we attach a (5s + 1)-loop to

a2s and a (5s + 2)-loop to a2s+1.

We mirror these actions for our graph B, where b2s and b2s+1 are

the corresponding root nodes.

Definition

The root node a2s in our graph G with its loops is the 2sth

connected component or just the 2sth component of G.

20



Thinking of strategies

For all i , e ∈ ω, we want to meet the requirements:

• Si : if G ∼= Mi , then there exists a computable embedding

fi : G → Mi , and

• Re : ΦX
e : G → B is not an isomorphism.

For each type of requirement, we can think of a basic strategy to

satisfy them.

21



Thinking of strategies

For all i , e ∈ ω, we want to meet the requirements:

• Si : if G ∼= Mi , then there exists a computable embedding

fi : G → Mi , and

• Re : ΦX
e : G → B is not an isomorphism.

For each type of requirement, we can think of a basic strategy to

satisfy them.

21



Basic Si-strategy

Fix an Si requirement. Our strategy is:

1. Set its parameter ni = 0. This parameter keeps track of the

components we are currently trying to match between G and

Mi .

Set fi to be the empty map.

2. At stage s, check if Mi [s] contains a copy of the 2ni th and
(2ni + 1)st components of G.

• If so, extend fi to those components and increment ni .

• If not, continue the search at the next stage.

22



Basic Si-strategy

Fix an Si requirement. Our strategy is:

1. Set its parameter ni = 0. This parameter keeps track of the

components we are currently trying to match between G and

Mi . Set fi to be the empty map.

2. At stage s, check if Mi [s] contains a copy of the 2ni th and
(2ni + 1)st components of G.

• If so, extend fi to those components and increment ni .

• If not, continue the search at the next stage.

22



Basic Si-strategy

Fix an Si requirement. Our strategy is:

1. Set its parameter ni = 0. This parameter keeps track of the

components we are currently trying to match between G and

Mi . Set fi to be the empty map.

2. At stage s, check if Mi [s] contains a copy of the 2ni th and
(2ni + 1)st components of G.

• If so, extend fi to those components and increment ni .

• If not, continue the search at the next stage.

22



Basic Si-strategy

Fix an Si requirement. Our strategy is:

1. Set its parameter ni = 0. This parameter keeps track of the

components we are currently trying to match between G and

Mi . Set fi to be the empty map.

2. At stage s, check if Mi [s] contains a copy of the 2ni th and
(2ni + 1)st components of G.

• If so, extend fi to those components and increment ni .

• If not, continue the search at the next stage.

22



Basic Si-strategy

Fix an Si requirement. Our strategy is:

1. Set its parameter ni = 0. This parameter keeps track of the

components we are currently trying to match between G and

Mi . Set fi to be the empty map.

2. At stage s, check if Mi [s] contains a copy of the 2ni th and
(2ni + 1)st components of G.

• If so, extend fi to those components and increment ni .

• If not, continue the search at the next stage.

22



Basic Re-strategy

Fix an Re requirement. Our strategy is:

1. Set its parameter ne to be large. This parameter indicates

which components Re will use to diagonalize.

2. At stage s, check if ΦX
e [s] maps the 2neth and (2ne + 1)st

components in G to the corresponding components in B.
• If not, go to the next stage.

• If so, then add loops as follows:

(a) (5ne + 2)-loop and (5ne + 3)-loop to the 2neth component in

G
(b) (5ne + 1)-loop and (5ne + 4)-loop to the (2ne + 1)st

component in G
(c) (5ne + 2)-loop and (5ne + 4)-loop to the 2neth component in

B
(d) (5ne + 1)-loop and (5ne + 3)-loop to the (2ne + 1)st

component in B

23



Basic Re-strategy

Fix an Re requirement. Our strategy is:

1. Set its parameter ne to be large. This parameter indicates

which components Re will use to diagonalize.

2. At stage s, check if ΦX
e [s] maps the 2neth and (2ne + 1)st

components in G to the corresponding components in B.

• If not, go to the next stage.

• If so, then add loops as follows:

(a) (5ne + 2)-loop and (5ne + 3)-loop to the 2neth component in

G
(b) (5ne + 1)-loop and (5ne + 4)-loop to the (2ne + 1)st

component in G
(c) (5ne + 2)-loop and (5ne + 4)-loop to the 2neth component in

B
(d) (5ne + 1)-loop and (5ne + 3)-loop to the (2ne + 1)st

component in B

23



Basic Re-strategy

Fix an Re requirement. Our strategy is:

1. Set its parameter ne to be large. This parameter indicates

which components Re will use to diagonalize.

2. At stage s, check if ΦX
e [s] maps the 2neth and (2ne + 1)st

components in G to the corresponding components in B.
• If not, go to the next stage.

• If so, then add loops as follows:

(a) (5ne + 2)-loop and (5ne + 3)-loop to the 2neth component in

G
(b) (5ne + 1)-loop and (5ne + 4)-loop to the (2ne + 1)st

component in G
(c) (5ne + 2)-loop and (5ne + 4)-loop to the 2neth component in

B
(d) (5ne + 1)-loop and (5ne + 3)-loop to the (2ne + 1)st

component in B

23



Basic Re-strategy

Fix an Re requirement. Our strategy is:

1. Set its parameter ne to be large. This parameter indicates

which components Re will use to diagonalize.

2. At stage s, check if ΦX
e [s] maps the 2neth and (2ne + 1)st

components in G to the corresponding components in B.
• If not, go to the next stage.

• If so, then add loops as follows:

(a) (5ne + 2)-loop and (5ne + 3)-loop to the 2neth component in

G

(b) (5ne + 1)-loop and (5ne + 4)-loop to the (2ne + 1)st

component in G
(c) (5ne + 2)-loop and (5ne + 4)-loop to the 2neth component in

B
(d) (5ne + 1)-loop and (5ne + 3)-loop to the (2ne + 1)st

component in B

23



Basic Re-strategy

Fix an Re requirement. Our strategy is:

1. Set its parameter ne to be large. This parameter indicates

which components Re will use to diagonalize.

2. At stage s, check if ΦX
e [s] maps the 2neth and (2ne + 1)st

components in G to the corresponding components in B.
• If not, go to the next stage.

• If so, then add loops as follows:

(a) (5ne + 2)-loop and (5ne + 3)-loop to the 2neth component in

G
(b) (5ne + 1)-loop and (5ne + 4)-loop to the (2ne + 1)st

component in G

(c) (5ne + 2)-loop and (5ne + 4)-loop to the 2neth component in

B
(d) (5ne + 1)-loop and (5ne + 3)-loop to the (2ne + 1)st

component in B

23



Basic Re-strategy

Fix an Re requirement. Our strategy is:

1. Set its parameter ne to be large. This parameter indicates

which components Re will use to diagonalize.

2. At stage s, check if ΦX
e [s] maps the 2neth and (2ne + 1)st

components in G to the corresponding components in B.
• If not, go to the next stage.

• If so, then add loops as follows:

(a) (5ne + 2)-loop and (5ne + 3)-loop to the 2neth component in

G
(b) (5ne + 1)-loop and (5ne + 4)-loop to the (2ne + 1)st

component in G
(c) (5ne + 2)-loop and (5ne + 4)-loop to the 2neth component in

B

(d) (5ne + 1)-loop and (5ne + 3)-loop to the (2ne + 1)st

component in B

23



Basic Re-strategy

Fix an Re requirement. Our strategy is:

1. Set its parameter ne to be large. This parameter indicates

which components Re will use to diagonalize.

2. At stage s, check if ΦX
e [s] maps the 2neth and (2ne + 1)st

components in G to the corresponding components in B.
• If not, go to the next stage.

• If so, then add loops as follows:

(a) (5ne + 2)-loop and (5ne + 3)-loop to the 2neth component in

G
(b) (5ne + 1)-loop and (5ne + 4)-loop to the (2ne + 1)st

component in G
(c) (5ne + 2)-loop and (5ne + 4)-loop to the 2neth component in

B
(d) (5ne + 1)-loop and (5ne + 3)-loop to the (2ne + 1)st

component in B

23



Conflict between strategies

Suppose Si has already defined fi on the 2neth and (2ne + 1)st

components of G when Re adds loops.

In the worst case scenario, Mi could add the new loops to make fi

wrong.

How do we solve this conflict when Si has higher priority than Re?

24



Conflict between strategies

Suppose Si has already defined fi on the 2neth and (2ne + 1)st

components of G when Re adds loops.

In the worst case scenario, Mi could add the new loops to make fi

wrong.

How do we solve this conflict when Si has higher priority than Re?

24



Conflict between strategies

Suppose Si has already defined fi on the 2neth and (2ne + 1)st

components of G when Re adds loops.

In the worst case scenario, Mi could add the new loops to make fi

wrong.

How do we solve this conflict when Si has higher priority than Re?

24



Updating the Re-strategy

We will change our Re-strategy:

1. Set parameter ne to be large.

2. Check if ΦX
e [s] maps the 2neth and (2ne +1)st components in

G to corresponding components in B. If not, do nothing. If

so, let me = max use of the computations above and proceed

to Step 3.

3. Add a (5ne + 3)-loop to the 2neth components in G and in B.
Add a (5ne + 4)-loop to the (2ne + 1)st components in G and

in B. Make the use ue of adding these new loops satisfy

ue > me .

25



Updating the Re-strategy

We will change our Re-strategy:

1. Set parameter ne to be large.

2. Check if ΦX
e [s] maps the 2neth and (2ne +1)st components in

G to corresponding components in B. If not, do nothing. If

so, let me = max use of the computations above and proceed

to Step 3.

3. Add a (5ne + 3)-loop to the 2neth components in G and in B.
Add a (5ne + 4)-loop to the (2ne + 1)st components in G and

in B. Make the use ue of adding these new loops satisfy

ue > me .

25



Updating the Re-strategy

We will change our Re-strategy:

1. Set parameter ne to be large.

2. Check if ΦX
e [s] maps the 2neth and (2ne +1)st components in

G to corresponding components in B.

If not, do nothing. If

so, let me = max use of the computations above and proceed

to Step 3.

3. Add a (5ne + 3)-loop to the 2neth components in G and in B.
Add a (5ne + 4)-loop to the (2ne + 1)st components in G and

in B. Make the use ue of adding these new loops satisfy

ue > me .

25



Updating the Re-strategy

We will change our Re-strategy:

1. Set parameter ne to be large.

2. Check if ΦX
e [s] maps the 2neth and (2ne +1)st components in

G to corresponding components in B. If not, do nothing.

If

so, let me = max use of the computations above and proceed

to Step 3.

3. Add a (5ne + 3)-loop to the 2neth components in G and in B.
Add a (5ne + 4)-loop to the (2ne + 1)st components in G and

in B. Make the use ue of adding these new loops satisfy

ue > me .

25



Updating the Re-strategy

We will change our Re-strategy:

1. Set parameter ne to be large.

2. Check if ΦX
e [s] maps the 2neth and (2ne +1)st components in

G to corresponding components in B. If not, do nothing. If

so, let me = max use of the computations above and proceed

to Step 3.

3. Add a (5ne + 3)-loop to the 2neth components in G and in B.
Add a (5ne + 4)-loop to the (2ne + 1)st components in G and

in B. Make the use ue of adding these new loops satisfy

ue > me .

25



Updating the Re-strategy

We will change our Re-strategy:

1. Set parameter ne to be large.

2. Check if ΦX
e [s] maps the 2neth and (2ne +1)st components in

G to corresponding components in B. If not, do nothing. If

so, let me = max use of the computations above and proceed

to Step 3.

3. Add a (5ne + 3)-loop to the 2neth components in G and in B.
Add a (5ne + 4)-loop to the (2ne + 1)st components in G and

in B. Make the use ue of adding these new loops satisfy

ue > me .

25



Updating the Re-strategy

4. Pause the Re-strategy and challenge Si to extend its map fi to

these new loops.

While waiting for Si to meet this challenge, we start a new

version of Re that works on a pair of components on which fi

has not been defined yet.

If Si never meets the challenge, then the new Re-strategy can

win with no interference from Si . If Si meets the challenge,

then we return to the old Re-strategy.

5. If Si meets the challenge, then Re adds a (5ne + 2)-loop to

the 2neth components in G and in B. It adds a (5ne + 1)-loop

to the (2ne + 1)st components in G and in B. Finally,
enumerate ue into X , and this lets us swap the (5ne + 3) and

(5ne + 4)-loops in B.

26



Updating the Re-strategy

4. Pause the Re-strategy and challenge Si to extend its map fi to

these new loops.

While waiting for Si to meet this challenge, we start a new

version of Re that works on a pair of components on which fi

has not been defined yet.

If Si never meets the challenge, then the new Re-strategy can

win with no interference from Si . If Si meets the challenge,

then we return to the old Re-strategy.

5. If Si meets the challenge, then Re adds a (5ne + 2)-loop to

the 2neth components in G and in B. It adds a (5ne + 1)-loop

to the (2ne + 1)st components in G and in B. Finally,
enumerate ue into X , and this lets us swap the (5ne + 3) and

(5ne + 4)-loops in B.

26



Updating the Re-strategy

4. Pause the Re-strategy and challenge Si to extend its map fi to

these new loops.

While waiting for Si to meet this challenge, we start a new

version of Re that works on a pair of components on which fi

has not been defined yet.

If Si never meets the challenge, then the new Re-strategy can

win with no interference from Si .

If Si meets the challenge,

then we return to the old Re-strategy.

5. If Si meets the challenge, then Re adds a (5ne + 2)-loop to

the 2neth components in G and in B. It adds a (5ne + 1)-loop

to the (2ne + 1)st components in G and in B. Finally,
enumerate ue into X , and this lets us swap the (5ne + 3) and

(5ne + 4)-loops in B.

26



Updating the Re-strategy

4. Pause the Re-strategy and challenge Si to extend its map fi to

these new loops.

While waiting for Si to meet this challenge, we start a new

version of Re that works on a pair of components on which fi

has not been defined yet.

If Si never meets the challenge, then the new Re-strategy can

win with no interference from Si . If Si meets the challenge,

then we return to the old Re-strategy.

5. If Si meets the challenge, then Re adds a (5ne + 2)-loop to

the 2neth components in G and in B. It adds a (5ne + 1)-loop

to the (2ne + 1)st components in G and in B. Finally,
enumerate ue into X , and this lets us swap the (5ne + 3) and

(5ne + 4)-loops in B.

26



Updating the Re-strategy

4. Pause the Re-strategy and challenge Si to extend its map fi to

these new loops.

While waiting for Si to meet this challenge, we start a new

version of Re that works on a pair of components on which fi

has not been defined yet.

If Si never meets the challenge, then the new Re-strategy can

win with no interference from Si . If Si meets the challenge,

then we return to the old Re-strategy.

5. If Si meets the challenge, then Re adds a (5ne + 2)-loop to

the 2neth components in G and in B.

It adds a (5ne + 1)-loop

to the (2ne + 1)st components in G and in B. Finally,
enumerate ue into X , and this lets us swap the (5ne + 3) and

(5ne + 4)-loops in B.

26



Updating the Re-strategy

4. Pause the Re-strategy and challenge Si to extend its map fi to

these new loops.

While waiting for Si to meet this challenge, we start a new

version of Re that works on a pair of components on which fi

has not been defined yet.

If Si never meets the challenge, then the new Re-strategy can

win with no interference from Si . If Si meets the challenge,

then we return to the old Re-strategy.

5. If Si meets the challenge, then Re adds a (5ne + 2)-loop to

the 2neth components in G and in B. It adds a (5ne + 1)-loop

to the (2ne + 1)st components in G and in B.

Finally,

enumerate ue into X , and this lets us swap the (5ne + 3) and

(5ne + 4)-loops in B.

26



Updating the Re-strategy

4. Pause the Re-strategy and challenge Si to extend its map fi to

these new loops.

While waiting for Si to meet this challenge, we start a new

version of Re that works on a pair of components on which fi

has not been defined yet.

If Si never meets the challenge, then the new Re-strategy can

win with no interference from Si . If Si meets the challenge,

then we return to the old Re-strategy.

5. If Si meets the challenge, then Re adds a (5ne + 2)-loop to

the 2neth components in G and in B. It adds a (5ne + 1)-loop

to the (2ne + 1)st components in G and in B. Finally,
enumerate ue into X , and this lets us swap the (5ne + 3) and

(5ne + 4)-loops in B.
26



Looking at minimal pairs

We can extend my construction to build a minimal pair of sets

such that a computable graph G is not c.c. relative to either set.

Theorem (Villano; Minimal Pairs Version)

There exists a computable directed graph G and c.e. sets A0 and

A1 such that

(1) G is computably categorical,

(2) G is not computably categorical relative to Ai for i = 0, 1, and

(3) A0 and A1 form a minimal pair.

Question: Are other combinations possible with minimal pairs?

27



Looking at minimal pairs

We can extend my construction to build a minimal pair of sets

such that a computable graph G is not c.c. relative to either set.

Theorem (Villano; Minimal Pairs Version)

There exists a computable directed graph G and c.e. sets A0 and

A1 such that

(1) G is computably categorical,

(2) G is not computably categorical relative to Ai for i = 0, 1, and

(3) A0 and A1 form a minimal pair.

Question: Are other combinations possible with minimal pairs?

27



Looking at minimal pairs

We can extend my construction to build a minimal pair of sets

such that a computable graph G is not c.c. relative to either set.

Theorem (Villano; Minimal Pairs Version)

There exists a computable directed graph G and c.e. sets A0 and

A1 such that

(1) G is computably categorical,

(2) G is not computably categorical relative to Ai for i = 0, 1, and

(3) A0 and A1 form a minimal pair.

Question: Are other combinations possible with minimal pairs?

27



More structural results

Theorem (Villano)

There exists a computable directed graph G and a c.e. set X

such that

(1) G is not computably categorical, and

(2) G is computably categorical relative to X .

Theorem (Villano; Minimal Pairs Version (Not C.C. Root

Node))

There exists a computable directed graph G and c.e. sets A0 and

A1 such that

(1) G is not computably categorical,

(2) G is computably categorical relative to Ai for i = 0, 1, and

(3) A0 and A1 form a minimal pair.

28



More structural results

Theorem (Villano)

There exists a computable directed graph G and a c.e. set X

such that

(1) G is not computably categorical, and

(2) G is computably categorical relative to X .

Theorem (Villano; Minimal Pairs Version (Not C.C. Root

Node))

There exists a computable directed graph G and c.e. sets A0 and

A1 such that

(1) G is not computably categorical,

(2) G is computably categorical relative to Ai for i = 0, 1, and

(3) A0 and A1 form a minimal pair.
28



Goals

Conjecture (Splitting the Minimal Pair (C.C. Root Node))

There exists a computable directed graph G and c.e. sets X and

Y such that

(1) G is computably categorical,

(2) G is computably categorical relative to X ,

(3) G is not computably categorical relative to Y , and

(4) X and Y form a minimal pair.

We also have the version where we let G be not c.c.

Lastly, we also want to see if it would be possible to make a graph

G and c.e. sets X and Y such that G is c.c., is not c.c. relative to

either X or Y , but is c.c. relative to their join X ⊕ Y .

29



Goals

Conjecture (Splitting the Minimal Pair (C.C. Root Node))

There exists a computable directed graph G and c.e. sets X and

Y such that

(1) G is computably categorical,

(2) G is computably categorical relative to X ,

(3) G is not computably categorical relative to Y , and

(4) X and Y form a minimal pair.

We also have the version where we let G be not c.c.

Lastly, we also want to see if it would be possible to make a graph

G and c.e. sets X and Y such that G is c.c., is not c.c. relative to

either X or Y , but is c.c. relative to their join X ⊕ Y .

29



Goals

Conjecture (Splitting the Minimal Pair (C.C. Root Node))

There exists a computable directed graph G and c.e. sets X and

Y such that

(1) G is computably categorical,

(2) G is computably categorical relative to X ,

(3) G is not computably categorical relative to Y , and

(4) X and Y form a minimal pair.

We also have the version where we let G be not c.c.

Lastly, we also want to see if it would be possible to make a graph

G and c.e. sets X and Y such that G is c.c., is not c.c. relative to

either X or Y , but is c.c. relative to their join X ⊕ Y .

29



References

[1] Chris Ash et al. “Generic copies of countable structures”.

APAL 42.3 (1989), pp. 195–205.

[2] Rodney Downey, Matthew Harrison-Trainor, and

Alexander Melnikov. “Relativizing computable categoricity”.

PAMS 149.9 (2021), pp. 3999–4013.

[3] Rodney G. Downey et al. “The complexity of computable

categoricity”. Advances in Mathematics 268 (2015),

pp. 423–466.

[4] Ju. L. Eřs. “Theorie Der Numerierungen III”. MLQ 23.19-24

(1977), pp. 289–371. eprint: https://onlinelibrary.

wiley.com/doi/pdf/10.1002/malq.19770231902.

30

https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19770231902
https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19770231902


[5] Sergey S. Goncharov, Steffen Lempp, and Reed Solomon.

“The computable dimension of ordered abelian groups”.

Advances in Mathematics 175.1 (2003), pp. 102–143.

[6] S. S. Gončarov. “The problem of the number of

nonautoequivalent constructivizations”. Algebra i Logika 19.6

(1980), pp. 621–639, 745.

[7] J. B. Remmel. “Recursively Categorical Linear Orderings”.

PAMS 83.2 (1981), pp. 387–391. (Visited on 10/10/2022).

31


	Preliminaries
	Basic definitions from computability theory

	Overview of the exploration of computable categoricity
	Computable categoricity
	Historical overview
	Computable categoricity relative to a degree
	Studying behavior between 0 and 0''

	Current work
	A special case of DHM's result
	Strategies and outcomes
	Other results

	References

