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Part I: Computable categoricity

relative to a degree



Definitions

Definition

A function f : N → N is a (partial) computable function if there

exists an algorithm which computes the value of f on a given

input.

Definition

A set A ↑ N is computable if its characteristic function ωA is a

computable function.

Definition

A set A is computably enumerable (abbreviated as c.e.) if it is

the range of a total computable function f .
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Definitions

Definition

A graph G = (G ,E ) is computable if its domain, G , is N and

the edge relation E is a computable relation.

Recall that for a graph G = (G ,E ), the edge relation E is the set

{(a, b) : a, b ↓ G and there is an edge connecting a and b}.
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Measuring the complexity of isomorphism types

Definition

A computable structure A is computably categorical if for

every computable copy B of A, there exists a computable

isomorphism between A and B.

For example, a linear order L is computably categorical if and only

if it has finitely many adjacent pairs.

Definition

A computable structure A is relatively computably categorical

if for every copy (not necessarily computable) B of A, there is a

B-computable isomorphism between A and B.

These notions are not equivalent in general.
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Relativizing categoricity

Definition

For a Turing degree d, a computable structure A is computably

categorical relative to d if for every d-computable copy B of A,

there is a d-computable isomorphism between A and B.

This is distinct from being d-computably categorical.

Definition

A computable structure A is d-computably categorical if for all

computable copies B of A, there exists a d-computable

isomorphism between A and B.
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Background

How does computable categoricity relative to a degree behave?

Fact

A computable structure A is relatively computably categorical

if for all degrees d, A is computably categorical relative to d.

We begin with the following result.

Fact (Downey, Harrison-Trainor, Melnikov [DHTM21])

If A is a computable structure and it is computably categorical

relative to some degree d ↔ 0→→, then A is computably categorical

relative to all d ↔ 0→→.
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Below 0→

In the c.e. degrees, being computably categorical relative to a

degree is not monotonic.

Theorem (Downey, Harrison-Trainor, Melnikov [DHTM21])

There is a computable structure A and c.e. degrees

0 = d0 <T e0 <T d1 <T e1 <T . . . such that

(1) A is computably categorical relative to di for each i ,

(2) A is not computably categorical relative to ei for each i ,

(3) A is computably categorical relative to 0→.
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Below 0→

Theorem (V.)

Let P = (P ,↗) be a computable partially ordered set and let

P = P0 ↘ P1 be a computable partition. Then, there exists a

computable directed graph G and an embedding h of P into the

c.e. degrees where

(1) G is computably categorical;

(2) G is computably categorical relative to each degree in h(P0);

and

(3) G is not computably categorical relative to each degree in

h(P1).

We can also consider the version where G is made to be not

computably categorical.
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In the generic degrees

Definition

A degree d is low for isomorphism if for every pair of

computable structures A and B, A and B are d-computably

isomorphic if and only if they are computably isomorphic.

Theorem (Franklin, Solomon [FS14])

Every 2-generic degree is low for isomorphism.

This means that there cannot be a computable structure A which

is not computably categorical but changes its mind when we

relativize to a 2-generic degree d.

Theorem (V.)

There exists a (properly) 1-generic G such that there is a

computable directed graph A where A is not computably

categorical but is computably categorical relative to G .
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Beyond directed graphs

Question

For structures other than directed graphs, can you produce an

example which witnesses the chaotic behavior in the poset result?

There are some results in the literature that give a negative result

for Boolean algebras already.

Theorem ([Gon77], [Rem81])

A computable Boolean algebra is computably categorical if and

only if it has finitely many atoms.

Theorem (Bazhenov [Baz14])

For every degree d < 0→, a computable Boolean algebra is

d-computably categorical if and only if it is computably

categorical.
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Beyond directed graphs

Corollary (from results in [Hir+02] and [Mil+18])

For the following classes of structures, there exists a computable

example in each class which witnesses the chaotic behavior in the

poset result:

(1) symmetric, irreflexive graphs; partial orderings; lattices; rings

with zero-divisors; integral domains of arbitrary characteristic;

commutative semigroups; and 2-step nilpotent groups

(Theorem 1.22 of [Hir+02])

(2) countable fields (Theorem 1.8 of [Mil+18])

Currently, the full picture is yet to be determined for some classes

of structures, such as linear orderings.
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Part II: Topology in reverse

mathematics



Brief overview of reverse mathematics

Question

When proving mathematical theorems, which logical axioms are

su!cient and necessary to prove them?

We make this question precise by measuring the logical strength of

theorems using subsystems of second-order arithmetic. Our base

theory is RCA0.

Definition

The formal system RCA0 consists of the following axioms and

axiom schema:

(1) PA↑, i.e., axioms which describe a discrete ordered semiring;

(2) the !0
1 comprehension scheme; and

(3) I”0
1 (the induction axiom restricted to ”0

1 formulas),
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RCA0 and beyond RCA0

The following mathematical theorems are provable in RCA0:

(1) The Baire category theorem;

(2) the existence of an algebraic closure of a countable field; and

(3) the Intermediate Value Theorem.

There are mathematical theorems which require more machinery,

and so we can measure their logical strength using stronger

subsystems such as ACA0.

Definition

The formal system ACA0 consists of RCA0 and the

comprehension scheme for all arithmetical formulas.
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Other subsystems

Many well-known mathematical theorems are equivalent, over

RCA0, to one of the following subsystems, listed in order of

increasing strength:

WKL0 ≃ ACA0 ≃ ATR0 ≃ #1
1-CA0.

Other subsystems have arisen under the level of ACA0 via

combinatorial principles; one such principle is RT2
2.
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Ramsey’s theorem for 2-colorings of pairs

Definition

Let [N]n denote the collection of n-element subsets of N. A
k-coloring of [N]n is a map c : [N]n → k . A set H ↑ N is

homogeneous for c if there is an i < k where c(s) = i for all

s ↓ [H]n.

Definition

RT2
2 is the statement that every 2-coloring c : [N]2 → 2 admits

an infinite homogeneous set H.
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Consequences of RT2
2

The following consequences of RT2
2 are important to the results in

my thesis.

Definition (Chain/antichain principle)

CAC is the statement that every infinite partial order (P ,↗P) has

an infinite chain or antichain.

Definition (Ascending/descending sequence principle)

ADS is the statement that every infinite linear order has an

infinite ascending sequence or an infinite descending sequence.
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The Ginsburg-Sands theorem

Theorem (Ginsburg, Sands [GS79])

Every infinite topological space contains one of the following five

spaces, with N as the underlying set, as a subspace:

(i) discrete: all subsets of N are open;

(ii) indiscrete: the only open sets are N and ⇐;
(iii) cofinite: the open sets are N, ⇐, and all subsets of N with

finite complement;

(iv) initial segment: the open sets are N, ⇐, and all sets of the

form [0, n] = {k ↓ N : k ↗ n};
(v) final segment: the open sets are N, ⇐, and all sets of the form

[n,⇒) = {k ↓ N : n ↗ k}.
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Countable second-countable spaces

Definition

X is said to be second-countable (or is a second-countable

space) if there is a countable collection U = {Ui}i↓N of open

subsets of X that form a basis for the topology on X .

Definition (Dorais [Dor11])

A countable second-countable (CSC) space is a tuple

⇑X ,U , k⇓ as follows:

(1) X is a subset of N;
(2) U = ⇑Un : n ↓ N⇓ is a family of subsets of X such that every

x ↓ X belongs to Un for some n ↓ N;
(3) k : X ⇔ N⇔ N → N is a function such that for every x ↓ X

and all m, n ↓ N, if x ↓ Um ↖ Un then

x ↓ Uk(x ,m,n) ↑ Un ↖ Um.
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Building CSC spaces

Proposition ([Dor11])

The following is provable in RCA0. Given a set X ↑ N and a

collection ⇑Vn : n ↓ N⇓ of subsets of X , there exists a CSC space

⇑X ,U , k⇓ with U = {Un : n ↓ N} as follows:

(1) for every n ↓ N, Vn ↓ U ;
(2) for every m ↓ N, Um =

⋂
n↓F

Vn, where F is the finite set

coded by m.

We say that a CSC built up by specifying a sequence ⇑Vn : n ↓ N⇓
is generated by that sequence.
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The closure relation

The first part of the proof of Ginsburg-Sands involves defining the

following equivalence relation on an infinite topological space X :

x ↙ y ≃∝ cl{x} = cl{y}.

If each equivalence class is finite, then there must be infinitely

many such classes, and so we can form an infinite T0 subspace.

On this subspace, we define the following partial order:

x ↗ y ≃∝ x ↓ cl{y}.

Question

For a CSC space X , how much logical strength do we need to

define the closure of a point?
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The closure relation

Definition

The closure relation clX on a topological space X is the binary

relation defined by

(y , x) ↓ clX ≃∝ y ↓ cl{x}.

In RCA0, we formalize clX for a CSC space X in the following way.

Definition (RCA0)

The closure relation clX on a CSC space X is the binary relation

defined by

(y , x) ↓ clX ≃∝ (′n)(y ↓ Un → x ↓ Un).
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Results regarding the closure relation

Theorem (RCA0)

The following are equivalent:

(1) ACA0.

(2) For a CSC space ⇑X ,U , k⇓, the closure relation clX exists.

The next question we can ask is for a CSC space with the closure

relation given as part of its description, is CAC necessary to prove

Ginsburg-Sands?
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Weakening Ginsburg-Sands

Definition

wGScl: Let ⇑X ,U , k⇓ be an infinite CSC space with a closure

relation clX . Then, X has one of the following:

(i) an infinite T1 subspace;

(ii) an infinite indiscrete subspace;

(iii) an infinite subspace homeomorphic to N with the initial

segment topology;

(iv) an infinite subspace homeomorphic to N with the final

segment topology.

This is a weakening of the original Ginsburg-Sands theorem since

the infinite discrete subspace or infinite subspace with the cofinite

topology cases are collapsed into (i).
27



Topological characterization of CAC

Theorem (RCA0)

The following are equivalent:

(1) CAC.

(2) wGScl.

This gives us a topological characterization of the combinatorial

principle CAC.
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Part III: Sketch of construction for

generic result



Requirements

We have the following requirements:

• Rj : (∞ε ↑ G )(ε ↓ Wj ∈ (′ϑ ∋ ε)(ϑ △↓ Wj)),

• Pe : $e : A → B is not an isomorphism, and

• Si : if A ↙= MG
i , then there exists a G -computable

isomorphism f
G
i : A → MG

i .
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Building A in stages

We build the computable directed graph A in stages.

At stage s = 0, we set the domain of A to be empty.

At stage s > 0, we add two new connected components by adding

a2s and a2s+1 as root nodes. We attach 2-loop to each node.

Then, we attach a (5s + 1)-loop to a2s and a (5s + 2)-loop to

a2s+1.

Definition

The root node a2s in our graph A with its loops is the 2sth

connected component or just the 2sth component of A.
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Configuration of loops in A

31
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Basic strategies: Pe

This is our basic strategy to satisfy all Pe requirements.

Let s be the current stage of the construction and let ϖ be a

Pe-strategy.

1. If ϖ is first eligible to act at stage s, it defines its witness nω
to be a large unused number. Let n = nω.

2. Check if $e maps the 2nth and (2n + 1)st components of A
to the 2nth and (2n + 1)st components of B, respectively. If
not, ϖ takes no action at stage s. If so, ϖ takes action by

adding new loops to these components in A and B.
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Basic strategies: Pe

This is our basic strategy to satisfy all Pe requirements.

Let s be the current stage of the construction and let ω be a

Pe-strategy.

1. If ω is first eligible to act at stage s, it defines its witness nω
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Basic strategies: Si

This is our basic strategy for the Si requirements. Let ϖ be an

Si -strategy.

For each n, we try to find copies of the 2nth and (2n + 1)st

components of A in MG
i . Initial segments of G can change

throughout the construction, and so loops in MG
i or embeddings

using certain initial segments of G can disappear or reappear.
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Basic strategies: Si

When ϖ is next eligible to act at stage s, it can check if an initial

segment of G has changed up to some previously defined use for

an f
G
i -computation at that point in the construction.

This will determine what parameter, nω, ϖ will work with when

trying to match A[s]-components with their copies (if any) in

MG
i [s].
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Interactions between strategies

There are several interactions and conflicts to keep note of in the

construction.

Interaction 1

The Pe requirement wants to diagonalize while the Si

requirements want to build embeddings: this can primarily be

resolved by having Pe “wait” for higher priority Si requirements
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Interactions between strategies

Interaction 2

Changes in initial segments of G can make computations

which disappeared reappear again: this can be resolved by

making pairs of A-components indistinct
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Thanks

Thank you for your attention!

I’d be happy to answer any questions.
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