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Preliminaries



Definitions (from computability)

Definition

A function f : N → N is a (partial) computable function if there

exists an algorithm which computes the value of f on a given

input.

For this talk, you can think of computable functions and Turing

machines as computer programs. Eventually, we want to ask the

following question: how much code is needed to describe certain

programs?
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Definitions (from computability)

There is an effective list {Φe : e ∈ ω} of all partial computable

functions. Each function is assigned a numerical index.

Using this effective list, there is an algorithmic procedure where

given an index e, we can obtain the Turing machine which

computes Φe .

We can then define a partial computable function on two

arguments U(e, x) such that U(e, x) = Φe(x). A function like this

is said to be universal.
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Definitions (from computability)

We can augment our computations by accessing information given

by a specified set of numbers, called an oracle.

Notation

We write f A(n) ↓= a if f with oracle set A converges on input n

and outputs a. Otherwise, we write f A(n) ↑.

Remark

If f A(n) ↓= a, then we only use a finite initial segment σ of the

oracle A to converge on n. That is, if f A(n) ↓= a, then there

exists a finite string σ ⊆ A such that f σ(n) ↓= a.
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Definitions (from algorithmic randomness)

We now introduce some notions from the field of algorithmic

randomness.

Definition

A set A ⊆ 2<ω is prefix-free if for all σ ∈ A and all τ ⊐ σ, we

have that τ ̸∈ A.

Definition

A computable function f is said to be prefix-free if its domain is

prefix-free. A prefix-free Turing machine is one whose domain

is prefix-free.

In the literature, prefix-free Turing machines are sometimes

referred to as self-delimiting machines.
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Definitions (from algorithmic randomness)

Like before, there is an effective list {Φe : e ∈ ω} of all prefix-free

computable functions, and so there exists a prefix-free universal

Turing machine.

We denote it by U .

Definition

For a string (finite or infinite) σ, the prefix-free Kolmogorov

complexity of σ is

K (σ) = min{|τ | : U(τ) = σ}.

Intuitively, the Kolmogorov complexity of σ tells you the length of

the shortest program which describes the string σ.
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What does it mean to be random?

Given an infinite string σ, what does it mean to say something like

“σ is a random string”?

A computational approach to this question is formulated with the

usage of (prefix-free) Kolmogorov complexity. Random strings

are those whose initial segments are difficult to compress.

There are two other approaches to this question: the

measure-theoretic approach (via null sets) and the unpredictability

approach (via martingales).

A fantastic resource for algorithmic randomness is Downey and

Hirschfeldt’s book Algorithmic Randomness and Complexity.

[DH10].
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Notions of randomness



Chaitin’s Ω

Definition

A set A is 1-random if

K (A ↾ n) ≥ n − O(1).

This is defined using the computational approach, and there are

equivalent definitions using Martin-Löf tests and

(super)martingales.

Example

Let U be a prefix-free universal Turing machine. Chaitin’s

halting probability is

Ω =
∑

σ∈dom(U)

2−|σ|.

Ω is 1-random.
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Relativizing

We can also relativize 1-randomness (i.e., we consider

computations using some oracle set X ).

The idea here is maybe we

could compress the initial segments of some infinite string if we

had access to an oracle.

Definition

Given a set A, we say that a set A is 1-random relative to X if

KX (A ↾ n) ≥ n − O(1).

Here, KX (σ) is the Kolmogorov complexity based on a prefix-free

universal Turing machine with oracle X , i.e., UX .
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Other notions of randomness

There are other formulations of randomness besides 1-randomness.

Some other formulations include:

Definition ([Sch71])

A set is computably random if no computable martingale

succeeds on it.

This definition has an equivalent measure-theoretic notion

(Schnorr randomness).

Definition ([MSU98])

A set is Kolmogorov-Loveland random if no partial computable

nonmonotonic betting strategy succeeds on it.

11
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Randomness zoo
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Classical Hausdorff dimension

We begin with the following definitions, in the style of [LL18].

Definition

Let E ⊆ Rn. For δ > 0, define Uδ(E ) to be the collection of all

countable covers of E by sets of positive diameter at most δ. For

s ≥ 0, let

Hs
δ (E ) = inf

{∑
i∈N

|Ui |s : {Ui}i∈N ∈ Uδ(E )

}
.

The s-dimensional Hausdorff outer measure of E is

Hs(E ) = lim
δ→0+

Hs
δ (E ).

13
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Classical Hausdorff dimension

Definition

The Hausdorff dimension of E is

dimH(E ) = inf{s > 0 : Hs(E ) = 0}.

One of the first instances of effectivizing Hausdorff dimension is

due to J.H. Lutz [Lut00] using a generalization of the notion of a

(super)martingale.

For this talk, we will use the characterization of effective Hausdorff

dimension using initial segment complexity.
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Effective Hausdorff dimension

Theorem ([May02])

For A ∈ 2ω, the effective Hausdorff dimension of A is

dim(A) = lim inf
n→∞

K (A ↾ n)
n

.

This will be our definition of effective Hausdorff dimension.
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An application to Falconer problems



From points to sets

Following [LL18], we extend Kolmogorov complexity so we can

define the dimensions of arbitrary points in Euclidean space.

Definition

For x ∈ Rn and r ∈ N, the Kolmogorov complexity of x at

precision r is

Kr (x) = min{K (q) : q ∈ Qn ∩ B2−r (x)}.

Definition

For x ∈ Rn, the dimension of x is

dim(x) = lim inf
r→∞

Kr (x)

r
.
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The point-to-set principle

We can relativize the definitions from the last slide to an arbitrary

oracle A ⊆ N to define KA
r (x) and dimA(x).

Theorem (Point-to-set principle for Hausdorff dimension,

[LL18])

For every set E ⊆ Rn,

dimH(E ) = min
A⊆N

sup
x∈E

dimA(x).

The slogan: the existence of a high-dimensional point in a set

E ⊆ Rn implies that E must have high dimension [LL18].
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Falconer’s conjecture

Conjecture (Falconer’s conjecture, [Fal85],[Ios19])

Let d ≥ 2. If the Hausdorff dimension of E ⊂ Rd is greater than
d

2
, then the Lebesgue measure of its distance set, ∆(E ), is

positive.

Definition

The distance set, ∆(E ), of a set E ⊂ Rd is

{|x − y | : x , y ∈ E}.

Intuitively: If a set E ⊂ Rd is a big set, then there should be lots

of different ways to draw lines between any two points in E . So,

they should have a wide range of different lengths.

18
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Falconer’s conjecture for fractalline sets

The Sierpiński carpet after 6 steps

The Hausdorff dimension of the carpet is
log 8

log 3
≈ 1.8928.
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Results using the point-to-set principle

There are several versions of Falconer’s conjecture where progress

has been made.

The following results cited here use the

point-to-set principle.

Theorem ([Stu22])

Let E ⊆ R2 be an analytic set with Hausdorff dimension strictly

greater than one. Then, for all x ∈ R2 outside a set of Hausdorff

dimension at most 1,

dimH(∆xE ) ≥
s

4
+

1

2
,

where s = dimH(E ).

∆xE is the pinned distance set of E , i.e.,

∆xE = {|x − y | : y ∈ E} where E ⊆ Rd and x ∈ Rd .
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Results using the point-to-set principle

The [Stu22] result is an improvement on the best known bounds

for the pinned distance set problem for sets E whose dimension is

close to 1.

Another recent result about pinned distance sets using the

point-to-set principle is in [FS23] by Fiedler and Stull for analytic

sets in R2.

Most papers about Falconer’s conjecture state that for E ⊆ Rn,

there exists a pin x ∈ E where ∆xE has large Hausdorff measure.

The result in [FS23] shows that there are a lot of pins with this

property in an analytic set E .
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Thank You

Thanks for attending my talk! I’d be happy to answer any

questions.
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