
Relativized computable categoricity

Workshop on Reverse Mathematics at the Erwin Schrödinger

Institute in Vienna, Austria

Java Darleen Villano

August 6th, 2025

University of Toronto

1



This talk is based on work from two papers: “Computable

categoricity relative to a c.e. degree” (arXiv:2401.06641) and

“Extensions of categoricity relative to a degree”

(arXiv:2505.15706).

Preprints of both are also available on my website.

2

https://arxiv.org/abs/2401.06641
https://arxiv.org/abs/2505.15706
https://javavillano.crd.co/


Outline

1. Background

2. Outside of the c.e. degrees

3. Outside of the class of directed graphs

4. Sketch of construction for the 1-generic result

3



Background



Computable categoricity

Definition

A computable structure A is computably categorical if for

every computable copy B of A, there exists a computable

isomorphism between A and B.

(Q,≤) as a linear order is computably categorical, whereas (N,≤)

is not computably categorical.

4



Computable categoricity

Definition

A computable structure A is computably categorical if for

every computable copy B of A, there exists a computable

isomorphism between A and B.

(Q,≤) as a linear order is computably categorical, whereas (N,≤)

is not computably categorical.

4



Relativizing categoricity

Definition

A computable structure A is relatively computably categorical

if for every copy (not necessarily computable) B of A, there is a

B-computable isomorphism between A and B.

Definition

For a Turing degree d, a computable structure A is computably

categorical relative to d if for every d-computable copy B of A,

there is a d-computable isomorphism between A and B.

A structure A is relatively computably categorical if it is

computably categorical relative to all degrees d.

5



Relativizing categoricity

Definition

A computable structure A is relatively computably categorical

if for every copy (not necessarily computable) B of A, there is a

B-computable isomorphism between A and B.

Definition

For a Turing degree d, a computable structure A is computably

categorical relative to d if for every d-computable copy B of A,

there is a d-computable isomorphism between A and B.

A structure A is relatively computably categorical if it is

computably categorical relative to all degrees d.

5



Relativizing categoricity

Definition

A computable structure A is relatively computably categorical

if for every copy (not necessarily computable) B of A, there is a

B-computable isomorphism between A and B.

Definition

For a Turing degree d, a computable structure A is computably

categorical relative to d if for every d-computable copy B of A,

there is a d-computable isomorphism between A and B.

A structure A is relatively computably categorical if it is

computably categorical relative to all degrees d.

5



Turing cones

Given a computable structure A, we can consider the following set

of degrees.

DA = {d : A is computably categorical relative to d}.

If we assume enough determinacy, then this set of degrees either

contains a cone in the Turing degrees or is disjoint from one.

Definition (Csima, Harrison-Trainor [CHT17])

A structure A is computably categorical on a cone above d if

for all c ≥ d, whenever B and C are c-computable copies of A,

there is a c-computable isomorphism between B and C.

6



Turing cones

Given a computable structure A, we can consider the following set

of degrees.

DA = {d : A is computably categorical relative to d}.

If we assume enough determinacy, then this set of degrees either

contains a cone in the Turing degrees or is disjoint from one.

Definition (Csima, Harrison-Trainor [CHT17])

A structure A is computably categorical on a cone above d if

for all c ≥ d, whenever B and C are c-computable copies of A,

there is a c-computable isomorphism between B and C.

6



Turing cones

If A is relatively computably categorical, then we can think of it as

being computably categorical on a cone above 0.

A is computably categorical on a cone above a degree d if and

only if it is computably categorical relative to all c ≥ d.

Fact (by [Ash+89] and [Gon80])

If A is a computable structure and it is computably categorical

relative to some degree d ≥ 0′′, then A has a 0′′-computable Σ0
1

Scott family. In particular, A is computably categorical relative

to all d ≥ 0′′.

So the set DA either contains the cone above 0′′ or does not

contain any cone at all.

7



Turing cones

If A is relatively computably categorical, then we can think of it as

being computably categorical on a cone above 0.

A is computably categorical on a cone above a degree d if and

only if it is computably categorical relative to all c ≥ d.

Fact (by [Ash+89] and [Gon80])

If A is a computable structure and it is computably categorical

relative to some degree d ≥ 0′′, then A has a 0′′-computable Σ0
1

Scott family. In particular, A is computably categorical relative

to all d ≥ 0′′.

So the set DA either contains the cone above 0′′ or does not

contain any cone at all.

7



Turing cones

If A is relatively computably categorical, then we can think of it as

being computably categorical on a cone above 0.

A is computably categorical on a cone above a degree d if and

only if it is computably categorical relative to all c ≥ d.

Fact (by [Ash+89] and [Gon80])

If A is a computable structure and it is computably categorical

relative to some degree d ≥ 0′′, then A has a 0′′-computable Σ0
1

Scott family. In particular, A is computably categorical relative

to all d ≥ 0′′.

So the set DA either contains the cone above 0′′ or does not

contain any cone at all.

7



Turing cones

If A is relatively computably categorical, then we can think of it as

being computably categorical on a cone above 0.

A is computably categorical on a cone above a degree d if and

only if it is computably categorical relative to all c ≥ d.

Fact (by [Ash+89] and [Gon80])

If A is a computable structure and it is computably categorical

relative to some degree d ≥ 0′′, then A has a 0′′-computable Σ0
1

Scott family. In particular, A is computably categorical relative

to all d ≥ 0′′.

So the set DA either contains the cone above 0′′ or does not

contain any cone at all.

7



Below 0′

In the c.e. degrees, being computably categorical relative to a

degree is not monotonic in the following way.

Theorem (Downey, Harrison-Trainor, Melnikov [DHTM21])

There is a computable structure A and c.e. degrees

0 = d0 <T e0 <T d1 <T e1 <T . . . such that

(1) A is computably categorical relative to di for each i ,

(2) A is not computably categorical relative to ei for each i ,

(3) A is computably categorical relative to 0′.

8



Below 0′

We can extend the DHTM result to partial orders of c.e. degrees.

Theorem (V.)

Let P = (P,≤) be a computable partially ordered set and let

P = P0 ⊔ P1 be a computable partition. Then, there exists a

computable directed graph G and an embedding h of P into the

c.e. degrees where

(1) G is computably categorical;

(2) G is computably categorical relative to each degree in h(P0);

and

(3) G is not computably categorical relative to each degree in

h(P1).

9



Below 0′

We can extend the DHTM result to partial orders of c.e. degrees.

Theorem (V.)

Let P = (P,≤) be a computable partially ordered set and let

P = P0 ⊔ P1 be a computable partition. Then, there exists a

computable directed graph G and an embedding h of P into the

c.e. degrees where

(1) G is not computably categorical;

(2) G is computably categorical relative to each degree in h(P0);

and

(3) G is not computably categorical relative to each degree in

h(P1).

10



Outside of the c.e. degrees



In the generic degrees

Definition

A set A is n-generic if for all Σ0
n set of strings S ⊆ 2<ω, there

exists an m such that either A ↾ m ∈ S or for all τ ⊇ A ↾ m,

τ ̸∈ S . A degree d is n-generic if it contains an n-generic set.

Definition

A degree d is low for isomorphism if for every pair of

computable structures A and B, A ∼=d B if and only if A ∼=∆0
1
B.

11



In the generic degrees

Definition

A set A is n-generic if for all Σ0
n set of strings S ⊆ 2<ω, there

exists an m such that either A ↾ m ∈ S or for all τ ⊇ A ↾ m,

τ ̸∈ S . A degree d is n-generic if it contains an n-generic set.

Definition

A degree d is low for isomorphism if for every pair of

computable structures A and B, A ∼=d B if and only if A ∼=∆0
1
B.

11



In the generic degrees

Theorem (Franklin, Solomon [FS14])

Every 2-generic degree is low for isomorphism.

This means that there cannot be a computable structure A which

is not computably categorical but is computably categorical

relative to d for a 2-generic degree d.

Theorem (V.)

There exists a (properly) 1-generic G such that there is a

computable directed graph A where A is not computably

categorical but is computably categorical relative to G.

12



In the generic degrees

Theorem (Franklin, Solomon [FS14])

Every 2-generic degree is low for isomorphism.

This means that there cannot be a computable structure A which

is not computably categorical but is computably categorical

relative to d for a 2-generic degree d.

Theorem (V.)

There exists a (properly) 1-generic G such that there is a

computable directed graph A where A is not computably

categorical but is computably categorical relative to G.

12



In the generic degrees

Theorem (Franklin, Solomon [FS14])

Every 2-generic degree is low for isomorphism.

This means that there cannot be a computable structure A which

is not computably categorical but is computably categorical

relative to d for a 2-generic degree d.

Theorem (V.)

There exists a (properly) 1-generic G such that there is a

computable directed graph A where A is not computably

categorical but is computably categorical relative to G.

12



Outside of the class of directed

graphs



Beyond directed graphs

Question

For structures other than directed graphs, can you produce an

example which witnesses the pathological behavior in the poset

result?

Corollary (from results in [Hir+02] and [Mil+18])

For the following classes of structures, there exists a computable

example in each class which witnesses the behavior in the poset

result:

(1) symmetric, irreflexive graphs; partial orderings; lattices; rings

with zero-divisors; integral domains of arbitrary characteristic;

commutative semigroups; and 2-step nilpotent groups

(Theorem 1.22 of [Hir+02]); and

(2) countable fields (Theorem 1.8 of [Mil+18]).

13



Beyond directed graphs

Question

For structures other than directed graphs, can you produce an

example which witnesses the pathological behavior in the poset

result?

Corollary (from results in [Hir+02] and [Mil+18])

For the following classes of structures, there exists a computable

example in each class which witnesses the behavior in the poset

result:

(1) symmetric, irreflexive graphs; partial orderings; lattices; rings

with zero-divisors; integral domains of arbitrary characteristic;

commutative semigroups; and 2-step nilpotent groups

(Theorem 1.22 of [Hir+02]); and

(2) countable fields (Theorem 1.8 of [Mil+18]).

13



Linear orders

Theorem (Remmel [Rem81])

A computable linear order is computably categorical if and only if

it has finitely many adjacent pairs.

In fact, every linear order which is computably categorical also

happens to be relatively computably categorical.

Question

For a linear order which is not computably categorical, can it be

computably categorical relative to some d > 0?

No; Remmel’s construction in the backwards direction relativizes to

any degree d.

14



Linear orders

Theorem (Remmel [Rem81])

A computable linear order is computably categorical if and only if

it has finitely many adjacent pairs.

In fact, every linear order which is computably categorical also

happens to be relatively computably categorical.

Question

For a linear order which is not computably categorical, can it be

computably categorical relative to some d > 0?

No; Remmel’s construction in the backwards direction relativizes to

any degree d.

14



Linear orders

Theorem (Remmel [Rem81])

A computable linear order is computably categorical if and only if

it has finitely many adjacent pairs.

In fact, every linear order which is computably categorical also

happens to be relatively computably categorical.

Question

For a linear order which is not computably categorical, can it be

computably categorical relative to some d > 0?

No; Remmel’s construction in the backwards direction relativizes to

any degree d.

14



Linear orders

Theorem (Remmel [Rem81])

A computable linear order is computably categorical if and only if

it has finitely many adjacent pairs.

In fact, every linear order which is computably categorical also

happens to be relatively computably categorical.

Question

For a linear order which is not computably categorical, can it be

computably categorical relative to some d > 0?

No; Remmel’s construction in the backwards direction relativizes to

any degree d.

14



In summary

For some classes of structures and degrees, there exists some

structure whose categorical behavior relative to a degree can

change (e.g., from being computably categorical to not being

computably categorical relative to a degree d > 0).

For other classes of structures (linear orders, Boolean algebras) and

degrees (2-generics), there are no structures who can change their

categorical behavior relative to a degree. In particular, for

computable linear orders, their limiting behavior for categoricity

relative to a degree already stabilizes on the cone above 0.

15



In summary

For some classes of structures and degrees, there exists some

structure whose categorical behavior relative to a degree can

change (e.g., from being computably categorical to not being

computably categorical relative to a degree d > 0).

For other classes of structures (linear orders, Boolean algebras) and

degrees (2-generics), there are no structures who can change their

categorical behavior relative to a degree.

In particular, for

computable linear orders, their limiting behavior for categoricity

relative to a degree already stabilizes on the cone above 0.

15



In summary

For some classes of structures and degrees, there exists some

structure whose categorical behavior relative to a degree can

change (e.g., from being computably categorical to not being

computably categorical relative to a degree d > 0).

For other classes of structures (linear orders, Boolean algebras) and

degrees (2-generics), there are no structures who can change their

categorical behavior relative to a degree. In particular, for

computable linear orders, their limiting behavior for categoricity

relative to a degree already stabilizes on the cone above 0.

15



Sketch of construction for the

1-generic result



Requirements

Theorem (V.)

There exists a (properly) 1-generic G such that there is a

computable directed graph A where A is not computably

categorical but is computably categorical relative to G.

We have the following requirements:

• Rj : (∃σ ⊆ G )(σ ∈ Wj ∨ (∀τ ⊇ σ)(τ ̸∈ Wj)),

• Pe : Φe : A → B is not an isomorphism, and

• Si : if A ∼= MG
i , then there exists a G -computable

isomorphism f Gi : A → MG
i .

16



Requirements

Theorem (V.)

There exists a (properly) 1-generic G such that there is a

computable directed graph A where A is not computably

categorical but is computably categorical relative to G.

We have the following requirements:

• Rj : (∃σ ⊆ G )(σ ∈ Wj ∨ (∀τ ⊇ σ)(τ ̸∈ Wj)),

• Pe : Φe : A → B is not an isomorphism, and

• Si : if A ∼= MG
i , then there exists a G -computable

isomorphism f Gi : A → MG
i .

16



Building A in stages

We build the computable directed graph A in stages.

At stage s = 0, we set the domain of A to be empty.

At stage s > 0, we add two new connected components by adding

a2s and a2s+1 as root nodes. We attach 2-loop to each node.

Then, we attach a (5s + 1)-loop to a2s and a (5s + 2)-loop to

a2s+1.

Definition

The root node a2s in our graph A with its loops is the 2sth

connected component or just the 2sth component of A.

17



Building A in stages

We build the computable directed graph A in stages.

At stage s = 0, we set the domain of A to be empty.

At stage s > 0, we add two new connected components by adding

a2s and a2s+1 as root nodes. We attach 2-loop to each node.

Then, we attach a (5s + 1)-loop to a2s and a (5s + 2)-loop to

a2s+1.

Definition

The root node a2s in our graph A with its loops is the 2sth

connected component or just the 2sth component of A.

17



Building A in stages

We build the computable directed graph A in stages.

At stage s = 0, we set the domain of A to be empty.

At stage s > 0, we add two new connected components by adding

a2s and a2s+1 as root nodes. We attach 2-loop to each node.

Then, we attach a (5s + 1)-loop to a2s and a (5s + 2)-loop to

a2s+1.

Definition

The root node a2s in our graph A with its loops is the 2sth

connected component or just the 2sth component of A.

17



Building A in stages

We build the computable directed graph A in stages.

At stage s = 0, we set the domain of A to be empty.

At stage s > 0, we add two new connected components by adding

a2s and a2s+1 as root nodes. We attach 2-loop to each node.

Then, we attach a (5s + 1)-loop to a2s and a (5s + 2)-loop to

a2s+1.

Definition

The root node a2s in our graph A with its loops is the 2sth

connected component or just the 2sth component of A.

17



Basic strategies: Pe

This is our basic strategy to satisfy all Pe requirements.

Let s be the current stage of the construction and let α be a

Pe-strategy.

1. If α is first eligible to act at stage s, it defines its witness nα

to be a large unused number. Let n = nα.

2. Check if Φe maps the 2nth and (2n + 1)st components of A
to the 2nth and (2n + 1)st components of B, respectively. If
not, α takes no action at stage s. If so, α takes action by

adding new loops to these components in A and B.

18



Basic strategies: Pe

This is our basic strategy to satisfy all Pe requirements.

Let s be the current stage of the construction and let α be a

Pe-strategy.

1. If α is first eligible to act at stage s, it defines its witness nα

to be a large unused number. Let n = nα.

2. Check if Φe maps the 2nth and (2n + 1)st components of A
to the 2nth and (2n + 1)st components of B, respectively.

If

not, α takes no action at stage s. If so, α takes action by

adding new loops to these components in A and B.

18



Basic strategies: Pe

This is our basic strategy to satisfy all Pe requirements.

Let s be the current stage of the construction and let α be a

Pe-strategy.

1. If α is first eligible to act at stage s, it defines its witness nα

to be a large unused number. Let n = nα.

2. Check if Φe maps the 2nth and (2n + 1)st components of A
to the 2nth and (2n + 1)st components of B, respectively. If
not, α takes no action at stage s.

If so, α takes action by

adding new loops to these components in A and B.

18



Basic strategies: Pe

This is our basic strategy to satisfy all Pe requirements.

Let s be the current stage of the construction and let α be a

Pe-strategy.

1. If α is first eligible to act at stage s, it defines its witness nα

to be a large unused number. Let n = nα.

2. Check if Φe maps the 2nth and (2n + 1)st components of A
to the 2nth and (2n + 1)st components of B, respectively. If
not, α takes no action at stage s. If so, α takes action by

adding new loops to these components in A and B.

18



Basic strategies: Si

The general goal of our basic strategy to satisfy all Si requirements

is the following. Let α be an Si -strategy.

For each n, we try to find copies of the 2nth and (2n + 1)st

components of A in MG
i . Initial segments of G can change

throughout the construction, and so loops in MG
i or embeddings

using certain initial segments of G can disappear or reappear.

19



Basic strategies: Si

The general goal of our basic strategy to satisfy all Si requirements

is the following. Let α be an Si -strategy.

For each n, we try to find copies of the 2nth and (2n + 1)st

components of A in MG
i .

Initial segments of G can change

throughout the construction, and so loops in MG
i or embeddings

using certain initial segments of G can disappear or reappear.

19



Basic strategies: Si

The general goal of our basic strategy to satisfy all Si requirements

is the following. Let α be an Si -strategy.

For each n, we try to find copies of the 2nth and (2n + 1)st

components of A in MG
i . Initial segments of G can change

throughout the construction, and so loops in MG
i or embeddings

using certain initial segments of G can disappear or reappear.

19



Basic strategies: Si

When α is next eligible to act at stage s, it can check if an initial

segment of G has changed up to some previously defined use for

an f Gi -computation at that point in the construction.

This will determine what parameter, nα, α will work with when

trying to match A[s]-components with their copies (if any) in

MG
i [s].

20



Basic strategies: Si

When α is next eligible to act at stage s, it can check if an initial

segment of G has changed up to some previously defined use for

an f Gi -computation at that point in the construction.

This will determine what parameter, nα, α will work with when

trying to match A[s]-components with their copies (if any) in

MG
i [s].

20



Interactions between strategies

There are several interactions and conflicts to keep note of in the

construction.

Interaction 1

The Pe requirement wants to diagonalize while the Si

requirements want to build embeddings: this can primarily be

resolved by having Pe “wait” for higher priority Si requirements.

Interaction 2

Changes in initial segments of G can make computations

which disappeared because of a diagonalization reappear

again: this can be resolved by making pairs of A-components

indistinct.

21



Interactions between strategies

There are several interactions and conflicts to keep note of in the

construction.

Interaction 1

The Pe requirement wants to diagonalize while the Si

requirements want to build embeddings: this can primarily be

resolved by having Pe “wait” for higher priority Si requirements.

Interaction 2

Changes in initial segments of G can make computations

which disappeared because of a diagonalization reappear

again: this can be resolved by making pairs of A-components

indistinct.

21



Interactions between strategies

There are several interactions and conflicts to keep note of in the

construction.

Interaction 1

The Pe requirement wants to diagonalize while the Si

requirements want to build embeddings: this can primarily be

resolved by having Pe “wait” for higher priority Si requirements.

Interaction 2

Changes in initial segments of G can make computations

which disappeared because of a diagonalization reappear

again: this can be resolved by making pairs of A-components

indistinct.

21



Thanks

Thank you for your attention!

I’d be happy to answer any questions.

22



References

[Ash+89] C. Ash et al. “Generic copies of countable

structures”. Annals of Pure and Applied Logic 42.3

(1989), pp. 195–205. issn: 0168-0072.

[CHT17] B. F. Csima and M. Harrison-Trainor. “Degrees of

Categoricity on a Cone via η-systems”. The

Journal of Symbolic Logic 82.1 (2017), pp. 325–346. issn:

00224812, 19435886.

[DHTM21] R. Downey, M. Harrison-Trainor, and A. Melnikov.

“Relativizing computable categoricity”. Proc.

Amer. Math. Soc. 149.9 (2021), pp. 3999–4013. issn:

0002-9939.

23



[FS14] J. N. Y. Franklin and R. Solomon. “Degrees that

Are Low for Isomorphism”. Computability 3 (2014),

pp. 73–89.

[Gon80] S. S. Goncharov. “The problem of the number of

nonautoequivalent constructivizations”. Algebra i

Logika 19.6 (1980), pp. 621–639, 745.

[Hir+02] D. R. Hirschfeldt et al. “Degree spectra and

computable dimensions in algebraic structures”.

Annals of Pure and Applied Logic 115.1 (2002),

pp. 71–113. issn: 0168-0072.

[Mil+18] R. Miller et al. “A Computable Functor from

Graphs to Fields”. The Journal of Symbolic Logic 83.1

(2018), 326–348.

24



[Rem81] J. B. Remmel. “Recursively Categorical Linear

Orderings”. Proc. Amer. Math. Soc. 83.2 (1981),

pp. 387–391.

25


	Background
	Outside of the c.e. degrees
	Outside of the class of directed graphs
	Sketch of construction for the 1-generic result
	References

