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Preliminaries



Definitions

Question

Given a structure A and a copy B of it, what is the complexity of

the isomorphism between A and B?

We restrict ourselves to countable structures with domain ω in a

computable language.

Definition

A structure A is computably categorical if for every

computable copy B of A, there exists a computable isomorphism

between A and B.
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Examples of computable categorical structures

Here are some examples of computably categorical structures.

Example

• Computable linear orderings with only finitely many adjacent

pairs (Remmel [Rem81]);

• Computable fields of finite transcendence degree (Eřsov

[Eřs77]); and

• Computable ordered groups of finite rank (Gončarov, Lempp,

Solomon [GLS03]).

The given conditions in each example are both necessary and

sufficient for computable categoricity.
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Relativizing categoricity



Relatively computably categorical

The most studied relativization of categoricity is the following.

Definition

A structure A is relatively computably categorical if for every

copy (not necessarily computable) B of A, there is a

B-computable isomorphism between A and B.

Remark

If a structure is relatively computably categorical, then it is

computably categorical.

The converse is not true in general.
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Algebraic characterization of computable categoricity

For a class of structures, if there is a purely algebraic

characterization of computable categoricity, then a computably

categorical structure A will often also be relatively computably

categorical.

The connection between an algebraic characterization of

computable categoricity and the equivalence of plain and relativized

computable categoricity was clarified by the following result.

Theorem (Ash, Knight, Manasse, and Slaman [Ash+89];

Chisholm [Chi90])

A structure is relatively computably categorical if and only if it

has a formally Σ1 Scott family.
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Scott families

Definition

A Scott family of ∃-formulas for a structure A is a set S of

existential formulas such that

(1) for every a ∈ A, there is a φ(x) ∈ S such that A |= φ(a), and

(2) if A |= (φ(a) ∧ φ(b)) for a, b ∈ A and φ(x) ∈ S , then there is

an automorphism of A sending a to b.

Definition

A formally Σ1 Scott family for a computable structure A is a

c.e. set of ∃-formulas that is a Scott family for A.

Observation

If a computable structure A has a Scott family of ∃-formulas,

then 0′′ can enumerate such a family. So, A has a formally Σ1

Scott family relative to 0′′.
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Plain but not relative

Gončarov [Gon77] built the first example of a structure which was

computably categorical but not relatively computably categorical,

using an enumeration result due to Selivanov [Sel76].

He also later showed if that if a computable structure which is

computably categorical had a single 2-decidable copy, then it must

be relatively computably categorical.

Theorem (Gončarov [Gon80])

If a structure is computably categorical and its ∀∃ theory is

decidable, then it is relatively computably categorical.

Kudinov [Kud96] showed that the assumption of 2-decidability

could not be lowered to 1-decidability.
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Using a finite number of jumps

We now move beyond computable isomorphisms by allowing

ourselves a fixed number of jumps.

Definition

For α a computable ordinal, a structure A is ∆0
α-categorical if

for any computable copy B of A, there is a ∆0
α-computable

isomorphism between A and B.

Definition

A structure A is relatively ∆0
α-categorical if for any copy B of

A, there is a ∆0
α(B)-computable isomorphism between A and B.
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Plain and relative ∆0
α-categoricity

There are relatively few known characterizations of ∆0
α-categoricity

within particular classes of structures, and what is known usually

requires additional computable theoretic hypotheses on a structure.

For example, McCoy [McC02] studied computable Boolean

algebras for which the set of atoms and the set of atomless

elements were computable in at least one computable copy, and

showed that they were ∆0
2-categorical if they were a finite direct

sum of atoms, 1-atoms, and atomless elements.

In the same paper, he showed that a computable Boolean algebra

is relatively ∆0
2-categorical if it is a finite direct sum of atoms,

1-atoms, and atomless elements.
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Categoricity relative to a degree



A newer relativization

The following relativization of categoricity appears in the main

result of a paper by Downey, Harrison-Trainor, and Melnikov

[DHTM21].

Definition

For X ∈ 2N, a structure A is computably categorical relative

to a degree X if for every X -computable copy B of A, there is

an X -computable isomorphism between A and B.

Fact

A computable structure A is relatively computably categorical

if for all X ∈ 2N, A is computably categorical relative to X .

11
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The cone above 0′′

The following is known.

Fact (Downey, Harrison-Trainor, Melnikov [DHTM21])

If A is a computable structure and it is computably categorical

relative to some degree d ≥ 0′′, then A has a 0′′-computable Σ0
1

Scott family. So, A is computably categorical relative to all

d ≥ 0′′.

Proof.

Suppose A is computably categorical relative to a degree d ≥ 0′′.

Since A is computable, its ∀∃ diagram is computable from 0′′

and hence from d. Using a relativization of Gončarov’s [Gon80]

result, we have that A has a formally Σ1 Scott family relative to

d, and so it has a Scott family of ∃-formulas. By a previous

observation, A has a formally Σ1 Scott family relative to 0′′.
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The cone above 0′′

If A is computably categorical relative to some d ≥ 0′′, then it is

computably categorical relative to all degrees above 0′′.

The contrapositive also gives us that if A does not have a

0′′-computable Σ1 Scott family, then it is not computably

categorical relative to any d ≥ 0′′.

So at 0′′ and above, any computable structure A will settle on

whether it is computably categorical relative to all degrees or to

none of them.

Question

What happens between 0 and 0′′?

13
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In the c.e. degrees

In the c.e. degrees, being computably categorical relative to a

degree is not monotonic.

Theorem (Downey, Harrison-Trainor, Melnikov [DHTM21])

There is a computable structure A and c.e. degrees

0 = Y0 <T X0 <T Y1 <T X1 <T . . . such that

(1) A is computably categorical relative to Yi for each i ,

(2) A is not computably categorical relative to Xi for each i ,

(3) A is computably categorical relative to 0′.

14
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Partial orders of c.e. degrees

We extend this result to partial orders of c.e. degrees.

Theorem (V. [Vil24])

Let P = (P,≤) be a computable partially ordered set and let

P = P0 ⊔ P1 be a computable partition. Then, there exists a

computable computably categorical directed graph G and an

embedding h of P into the c.e. degrees where G is computably

categorical relative to each degree in h(P0) and is not

computably categorical relative to each degree in h(P1).

15
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Basic ideas of the construction

We have a priority construction with four types of requirements

based on four goals:

(1) embedding P into the c.e. degrees;

(2) making the graph G computably categorical;

(3) making G computably categorical relative to all degrees in

h(P0); and

(4) making G not computably categorical relative to any degree in

h(P1).

We use a tree of strategies to organize restraints and parameters.

16
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h(P1).

We use a tree of strategies to organize restraints and parameters.
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Future directions: embedding a lattice

The techniques utilized in the proof can also be combined with the

usual techniques to construct minimal pairs.

In particular, we can

embed the four element lattice into the c.e. degrees.

Theorem (V. [Vil24])

There exists a computable computably categorical directed graph

G and c.e. sets X0 and X1 such that

(1) X0 and X1 form a minimal pair,

(2) G is not computably categorical relative to X0 and to X1, and

(3) G is computably categorical relative to X0 ⊕ X1.

You can also form a minimal pair X0 and X1 where G is

computably categorical relative to X0 but not to X1, and is

computably categorical relative to X0 ⊕ X1.
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Future directions: given a c.e. degree

Another question you can ask is the following.

Question

Given an arbitrary c.e. set D, can you always build a computable

graph G where

(1) G is computably categorical, and

(2) G is not computably categorical relative to D?

Conjecture

Given an arbitrary c.e. set D, there is a computable graph G
which is computably categorical and not computably categorical

relative to D, and vice-versa.
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Thanks

Thank you for your attention!

I’d be happy to answer any questions.

23


	Preliminaries
	Relativizing categoricity
	Relative computable categoricity
	0-computable categoricity

	Categoricity relative to a degree
	Current work and future directions

	References

