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Preliminaries



Definitions

Question

Given a structure A and a copy B of it, what is the complexity of

the isomorphism between A and B?

We restrict ourselves to countable structures with domain ω in a

computable language.

Definition

A computable structure A is computably categorical if for

every computable copy B of A, there exists a computable

isomorphism between A and B.
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Examples of computable categoricity

Here are some examples of computably categorical structures.

Example

• Computable linear orderings with only finitely many adjacent

pairs (Remmel [Rem81]);

• Computable algebraically closed fields of finite transcendence

degree (Eřsov [Eřs77]); and

• Computable ordered groups of finite rank (Gončarov, Lempp,

Solomon [GLS03]).

The given conditions in each example are both necessary and

sufficient for computable categoricity.
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• Computable ordered groups of finite rank (Gončarov, Lempp,
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Relativizing categoricity



Relatively computably categorical

The most studied relativization of categoricity is the following.

Definition

A computable structure A is relatively computably categorical

if for every copy (not necessarily computable) B of A, there is a

B-computable isomorphism between A and B.

Remark

If a computable structure is relatively computably categorical,

then it is computably categorical.

The converse is not true in general.
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Algebraic characterization of computable categoricity

For a class of structures, if there is a purely algebraic

characterization of computable categoricity, then a computably

categorical structure A will often also be relatively computably

categorical.

The connection between an algebraic characterization of

computable categoricity and the equivalence of plain and relativized

computable categoricity was clarified by the following result.

Theorem (Ash, Knight, Manasse, and Slaman [Ash+89];

Chisholm [Chi90])

A structure is relatively computably categorical if and only if it

has a formally Σ1 Scott family.
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Plain but not relative

Gončarov [Gon77] built the first example of a structure which was

computably categorical but not relatively computably categorical,

using an enumeration result due to Selivanov [Sel76].

He also later showed if that if a computable structure had a single

2-decidable copy, then it must be relatively computably categorical.

Theorem (Gončarov [Gon80])

If a structure is computably categorical and its ∀∃ theory is

decidable, then it is relatively computably categorical.

Kudinov [Kud96] showed that the assumption of 2-decidability

could not be lowered to 1-decidability.
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Using a finite number of jumps

We now move beyond computable isomorphisms by allowing

ourselves a fixed number of jumps.

Definition

For α a computable ordinal, a computable structure A is

∆0
α-categorical if for any computable copy B of A, there is a

∆0
α-computable isomorphism between A and B.

Definition

A computable structure A is relatively ∆0
α-categorical if for any

copy B of A, there is a ∆0
α(B)-computable isomorphism between

A and B.
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Plain and relative ∆0
α-categoricity

There are some examples of classes of structures where plain and

relative ∆0
α-categoricity coincide.

Theorem (Bazhenov [Baz14])

A computable Boolean algebra B is ∆0
2-categorical if and only if

it is relatively ∆0
2-categorical.

Similar to the case for computable categoricity and relative

computable categoricity, plain and relative ∆0
α-categoricity need

not coincide. There are several examples in a paper by Fokina,

Harizanov, and Turetsky [FHT19] (trees of finite and infinite

heights, etc.).
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Categoricity relative to a degree



A newer relativization

The following relativization of categoricity appears in the main

result of a paper by Downey, Harrison-Trainor, and Melnikov

[DHTM21].

Definition

For X ∈ 2N, a computable structure A is computably

categorical relative to a degree X if for every X -computable

copy B of A, there is an X -computable isomorphism between A
and B.

Fact

A computable structure A is relatively computably categorical

if for all X ∈ 2N, A is computably categorical relative to X .
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The cone above 0′′

The following is known.

Fact (Downey, Harrison-Trainor, Melnikov [DHTM21])

If A is a computable structure and it is computably categorical

relative to some degree d ≥ 0′′, then A has a 0′′-computable Σ0
1

Scott family. So, A is computably categorical relative to all

d ≥ 0′′.

So at 0′′ and above, any computable structure A will settle on

whether it is computably categorical relative to all degrees or to

none of them.

Question

What happens between 0 and 0′′?

11
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In the c.e. degrees

In the c.e. degrees, being computably categorical relative to a

degree is not monotonic.

Theorem (Downey, Harrison-Trainor, Melnikov [DHTM21])

There is a computable structure A and c.e. degrees

0 = Y0 <T X0 <T Y1 <T X1 <T . . . such that

(1) A is computably categorical relative to Yi for each i ,

(2) A is not computably categorical relative to Xi for each i ,

(3) A is computably categorical relative to 0′.

12
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Partial orders of c.e. degrees

We extend this result to partial orders of c.e. degrees.

Theorem (V. [Vil24])

Let P = (P,≤) be a computable partially ordered set and let

P = P0 ⊔ P1 be a computable partition. Then, there exists a

computable directed graph G and an embedding h of P into the

c.e. degrees where

(1) G is computably categorical;

(2) G is computably categorical relative to each degree in h(P0);

and

(3) G is not computably categorical relative to each degree in

h(P1).
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Basic ideas in the proof

We have a priority construction with four types of requirements

based on four goals:

(1) embedding P into the c.e. degrees;

(2) making the graph G computably categorical;

(3) making G computably categorical relative to all degrees in

h(P0); and

(4) making G not computably categorical relative to any degree in

h(P1).

We use a tree of strategies to organize restraints and parameters.
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Future directions: in the generic degrees

Definition

A degree d is low for isomorphism if for every pair of

computable structures A and B, A ∼=d B if and only if A ∼=∆0
1
B.

Theorem (Franklin, Solomon [FS14])

Every 2-generic degree is low for isomorphism.

This means that there cannot be a computable structure A which

is not computably categorical but is computably categorical

relative to d for a 2-generic degree d.

Conjecture

There exists a 1-generic G such that there is a computable

directed graph A where A is not computably categorical but is

computably categorical relative to G .
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Future directions: identifying pathological behavior in classes

of structures

Question

For structures other than directed graphs, can you produce an

example which witnesses the pathological behavior in the poset

result?

There are some results in the literature that give a negative result

for certain classes of structures already.

Theorem (Bazhenov [Baz14])

For every degree d < 0′, a computable Boolean algebra is

d-computably categorical if and only if it is computably

categorical.
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Future directions: identifying pathological behavior in classes

of structures

Conjecture

For the following classes of structures, there exists a computable

example in each class which witnesses the pathological behavior

in the poset result: symmetric, irreflexive graphs; partial

orderings; lattices; rings with zero-divisors; integral domains of

arbitrary characteristic; commutative semigroups; and 2-step

nilpotent groups.

This is based on the codings given in a paper by Hirschfeldt,

Khoussainov, Shore, and Slinko in [Hir+02]. In this paper, they

specified codings which satisfied certain conditions and thus

preserved several computability theoretic properties of structures,

such as the degree spectrum or computable dimension.
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